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Abstract. We show that the perturbation theory for dual semigroups (sun-star-calculus) that
has proved useful for analyzing delay-differential equations is equally efficient for dealing with Volterra
functional equations. In particular, we obtain both the stability and instability parts of the principle
of linearized stability and the Hopf bifurcation theorem. Our results apply to situations in which
the instability part has not been proved before. In applications to general physiologically structured
populations even the stability part is new.
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1. Introduction. Delay equations are rules for extending (in one direction) a
function that is a priori defined on an interval. Usually, as in the books [23, 40], one
considers delay differential equations of the type

ẋ(t) = F (xt), t ≥ 0,(1.1)

where, for some given h > 0,

xt(θ) := x(t + θ)(1.2)

for θ ∈ [−h, 0]. Here, in contrast, we consider functional equations of Volterra type,
so the extension rule prescribes the value of the function itself, rather than that of its
derivative, in terms of the history. We thus study initial value problems of the form

(DE) x(t) = F (xt), t > 0,

(IC) x0(θ) = ϕ(θ), θ ∈ [−h, 0],

with ϕ being a given function on [−h, 0]. The formula labels (DE), (IC) stand for
delay equation and initial condition, respectively.

In [23], the main tool for analyzing the delay differential equation (1.1) is the
perturbation theory for dual semigroups developed in [9, 10, 11, 12, 20], which under
appropriate assumptions transforms the Cauchy problem (1.1) and (IC) into an ab-
stract semilinear problem. This theory has proved to be equally efficient for treating
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age-structured population models; see [9, 11] and various exercises in [23]. The aim
of this paper is to show in detail that the same theory applies to functional equations
of Volterra type (DE), the only difference being the choice of the underlying function
space.

To give a feeling for the problems involved, we make a few formal manipulations.
Let

u(t, θ) := xt(θ), t ≥ 0, −h ≤ θ ≤ 0.(1.3)

The problem (DE), (IC) is equivalent to the following PDE with boundary and initial
conditions:

∂u

∂t
− ∂u

∂θ
= 0, t > 0, −h ≤ θ ≤ 0,(1.4)

u(t, 0) = F (u(t, ·)), t ≥ 0,(1.5)

u(0, θ) = ϕ(θ), −h ≤ θ ≤ 0.(1.6)

If F = 0, the problem reduces to an elementary linear problem. Its solution semigroup
T0 = {T0(t)}t≥0 is simply translation to the left with extension by zero:

(T0(t)ϕ)(θ) :=

{
ϕ(t + θ) for t + θ ∈ [−h, 0],
0 for t + θ > 0,

t ≥ 0, θ ∈ [−h, 0].(1.7)

Next we have to specify the state space (history space) on which the semigroup
T0 acts. The continuous functions will not do, because as can be seen from (1.7),
C[−h, 0] is not invariant under T0. A natural choice is X = L1[−h, 0]. With this
choice of state space, the generator A0 of T0 is differentiation with the zero boundary
condition entering into the domain of definition:

D(A0) = {ϕ ∈ X : ϕ ∈ AC, ϕ(0) = 0},(1.8)

A0ϕ = ϕ′,(1.9)

where the notation ϕ ∈ AC means that ϕ is absolutely continuous [2, p. 11].
The nonlinear problem (1.4)–(1.6) with F �= 0 can now be written as the abstract

Cauchy problem

du(t)

dt
= A(u(t))u(t), t > 0,(1.10)

u(0) = ϕ(1.11)

for u(t) := u(t, ·) = xt, where the action of A(u(t)) is still differentiation, but the
domain depends on the solution itself in a nonlinear way:

D(A(u(t))) = {ϕ ∈ X : ϕ ∈ AC,ϕ(0) = F (u(t))} .(1.12)

So the problem is quasi-linear and hence notoriously difficult [49]. A small trick,
however, turns the quasi-linear problem into a semilinear one, that is, a problem in
which the nonlinearity appears as an additive and relatively bounded perturbation of
the linear operator A0. Next we explain how this is done.
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The space L1[−h, 0] can be embedded into NBV(−h, 0], the space of functions of
bounded variation on (−h, 0] normalized to be zero at zero and continuous from the
right, by integration j : L1[−h, 0]→NBV(−h, 0],

(jϕ)(θ) := −
∫ 0

θ

ϕ(τ)dτ, θ ∈ (−h, 0].(1.13)

The image of L1[−h, 0] in NBV(−h, 0] under j consists of all functions absolutely
continuous on [−h, 0] and vanishing at 0 [46, sections IX. 2–4].

Integrating (1.4) from θ to 0 and taking the boundary condition (1.5) into account,
one obtains the semilinear problem

d

dt
ju(t) = A�∗

0 ju(t) + F (u(t))H, t > 0,(1.14)

u(0) = ϕ,(1.15)

where the operator A�∗
0 is differentiation on NBV(−h, 0] with appropriate domain

of definition (the �∗-notation will be explained in section 2) and H is a Heaviside
function defined by

H(θ) :=

{
−1 for θ ∈ (−h, 0),
0 for θ = 0.

(1.16)

The price one has to pay for the transformation of the quasi-linear problem into a
semilinear one is that, while the unknown u(t) = xt belongs to L1[−h, 0], the range of
the perturbation lies in the bigger space NBV(−h, 0] and actually outside j

(
L1[−h, 0]

)
(note that H ∈ NBV(−h, 0], but because of the discontinuity in 0 it is not absolutely
continuous). The perturbation theory mentioned above was designed especially to
have a general framework for such problems.

A key step is to replace the Cauchy problem (1.14) and (1.15) by an abstract in-
tegral equation of the variation-of-constants type, which is obtained from (1.14) and
(1.15) by formal integration. The main point is that, in fact, this abstract integral
equation is equivalent to the original problem (DE), (IC), while at the same time, it
allows us to prove linearized stability and other properties in a standard manner. As
these proofs are provided in detail in [23], we can concentrate here on the equivalence.
Note, however, that in the present paper we shall always explicitly express the em-
bedding operator j, while in [23] it is often suppressed with the understanding that
one can identify X and X�� once and for all.

The mathematics of age-structured populations mentioned above has been exten-
sively treated, for instance, in the books [17, 56]. Our main motivation comes from the
theory of general physiologically structured populations [24, 25, 27, 45]. Individuals
are distinguished from one another by their i-state (i for individual), which belongs
to a measurable space Ω. The population state (p-state) is a measure m on Ω giving
the distribution of i-states. Deterministic structured population models are defined
in terms of ingredients prescribing i-state specific survival, reproduction, and i-state
development, given the course of the environmental condition (or input) I(t) and a
feedback mechanism, which often is of the form

I(t) =

∫
Ω

γ(ξ)m(t)(dξ).(1.17)
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From the basic ingredients one can calculate the quantities FI|[t−a,t]
(ξ, ω) and λI|[t−a,t]

(ξ, ω) with the following interpretations: Let I be a given function of time, let ξ ∈ Ω,
and let ω be a measurable subset of Ω. Then we have the following.

• FI|[t−a,t]
(ξ, ω) is the probability that an individual who was born at time t−a

with i-state ξ is still alive at time t (when it has age a) and then has i-state
in ω.

• λI|[t−a,t]
(ξ, ω) is the rate at which an individual who was born at time t − a

with i-state ξ produces offspring with state-at-birth in ω at time t (when it
has age a).

The subscripts I|[t−a,t] of F and λ indicate that the quantities depend on the restric-
tion of I to the interval [t− a, t]; that is, they depend only on the values of I during
the lifetime of the individual in question.

Let b(t)(ω) denote the rate at which individuals are born with i-state in ω at time
t. Assuming a maximal life span h, bookkeeping gives

b(t)(ω) =

∫ h

0

∫
Ω

b(t− a)(dξ)λI|[t−a,t]
(ξ, ω)da,(1.18)

m(t)(ω) =

∫ h

0

∫
Ω

b(t− a)(dξ)FI|[t−a,t]
(ξ, ω)da.(1.19)

Thus in this generality one has an abstract variant of (DE).

Often there is but one possible state-at-birth. Or, in particular when dealing
with several interacting populations, there may be a finite number of possible states-
at-birth. In such cases one may limit ω in (1.18) to points chosen from a finite set.
If, in addition, I(t) in (1.17) has only finitely many components, we can condense
the essential information concerning the population problem into a finite dimensional
equation (DE). Indeed, combining (1.18) and (1.19) with the feedback law (1.17), one
finds that the value

x(t) =

(
b(t)
I(t)

)
(1.20)

is a nonlinear function of the history of x on [t − h, t]; that is, x satisfies a delay
equation of the form (DE), with F being a function from L1

(
[−h, 0],RN

)
to RN for

some integer N ≥ 2.

The population dynamical applications also motivate our choice of L1
(
[−h, 0],RN

)
as the history space. The components of b are rates at which individuals are born with
certain i-states. While rates may be unbounded, numbers of individuals (integrals of
rates) must remain finite.

The idea to use the history of I is new. The fact that in this manner we can use
perturbation theory for dual semigroups to treat general physiologically structured
population models, and not just age-structured models, triggered the writing of this
paper. In a companion paper, to be written jointly with J. A. J. Metz, we shall
elaborate in detail how the results of the present paper apply to population models.

In the present paper we shall consider only the case of finite delay. The reason
is that in this case the semigroup defined by (1.7) has a desirable property called
sun-reflexivity, which is lost in the case of infinite delay. However, our results can
easily be extended to also encompass the case of infinite delay. In section 6 we briefly
indicate how this can be done.
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In this paper we follow a top-down approach. We start in section 2 by present-
ing the abstract perturbation theory for dual semigroups and then we formulate the
principle of linearized stability which says that, under appropriate assumptions, local
(in)stability of a steady state is completely determined by the spectral properties of
the generator of the linearized semigroup. Under the extra assumption of finite di-
mensional range of the nonlinear perturbation G, we derive a characteristic equation,
the roots of which are the spectral values of the generator of the linearized semigroup.
We then give results on the stable, unstable, and center manifolds and on Hopf bi-
furcation. The results of section 2 are either known or slight modifications of known
results. In section 3 we then specialize to the system (DE), (IC) and the associated
unperturbed semigroup T0 defined by (1.7) and verify that the assumptions made in
section 2 indeed hold true. Models of structured populations often lead to delay equa-
tions coupled with delay differential equations. In section 4 we therefore consider such
coupled systems. In section 5 we illustrate our theoretical results by two examples
from population dynamics. We conclude in section 6 by relating our results to results
by other authors and by discussing directions for future work.

2. Lipschitz perturbations in the sun-reflexive case. We start by briefly
recalling the basic facts about dual semigroups. The books [4, 42, 47] are good general
references, as are Chapter III and Appendix II of [23]. The theory of nonlinear Lip-
schitz continuous perturbations of generators of dual semigroups was first introduced
in [11], where the principle of linearized stability was proved following [19]. The
treatment of the stable, unstable, and center manifolds and of Hopf bifurcation follows
[23].

2.1. Sun-reflexive dual semigroups. Let X be a real Banach space and T0 :=
{T0(t)}t≥0 be a strongly continuous (i.e., the orbit t 	→ T0(t)ϕ is continuous with
respect to the norm topology on X for all initial values ϕ ∈ X) semigroup of bounded
linear operators on X with infinitesimal generator A0. Then T ∗

0 := {T ∗
0 (t)}t≥0, where

T ∗
0 (t) : X∗ →X∗ is the adjoint of T0(t), is a semigroup on the dual space X∗ of X. T ∗

0

is called the adjoint or dual semigroup of T0. If X is not reflexive, then T ∗ need not
be strongly continuous. All one can say in general is that the orbits are continuous
with respect to the weak∗ topology of X. At the level of generators this is reflected
in the fact that the adjoint A∗

0 of A0 need not have dense domain and that A∗
0 is the

weak∗-generator of T ∗
0 .

The maximal invariant subspace of X∗ on which T ∗
0 is strongly continuous is

denoted by X�, that is,

X� :=

{
ϕ∗ ∈ X∗ : lim

t↓0
‖T ∗

0 (t)ϕ∗ − ϕ∗‖ = 0

}
.(2.1)

Note that this so-called sun-subspace depends on the dynamical system one considers
on the original space. It is known that

X� = D(A∗
0),(2.2)

where the bar denotes closure with respect to the norm topology of X∗. The operators
T ∗

0 (t), t ≥ 0, leave X� invariant, and the restriction T�
0 (t) := T ∗

0 (t)|X� of T ∗
0 to X�

is a strongly continuous semigroup and its generator A�
0 is the part of A∗

0 in X�; that
is,

D(A�
0 ) := {ϕ� ∈ D(A∗

0) : A∗
0ϕ

� ∈ X�},(2.3)

A�
0 ϕ

� := A∗
0ϕ

�.(2.4)
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We now have on X� exactly the same situation as we had on X at the outset. So in
self-explanatory notation we obtain X�∗, T�∗

0 , A�∗
0 and X��, T��

0 , A��
0 .

As usual, we denote the duality pairing between a Banach space X and its normed
dual X∗ by 〈·, ·〉; that is, for ϕ ∈ X, ϕ∗ ∈ X∗ we write 〈ϕ,ϕ∗〉 instead of ϕ∗(ϕ). The
formula

〈ϕ�, jϕ〉 = 〈ϕ,ϕ�〉, ϕ ∈ X, ϕ� ∈ X�(2.5)

defines an embedding j of X into X�∗, the range of which lies in X��. Moreover,
one has T�∗

0 (t)j = jT0(t) for t ≥ 0.
Definition 2.1. A Banach space X is called sun-reflexive with respect to the

strongly continuous linear semigroup T0 if

j(X) = X��.

From now on we shall always assume that X is sun-reflexive with respect to the
unperturbed semigroup T0.

2.2. Lipschitz perturbations and the nonlinear semigroup. Let G : X→X�∗

be a nonlinear operator. The initial value problem

dju

dt
(t) = A�∗

0 ju(t) + G(u(t)), t > 0,(2.6)

u(0) = ϕ,(2.7)

where u is an X-valued function, can be formally integrated to yield the abstract
integral equation

(AIE) u(t) = T0(t)ϕ + j−1

(∫ t

0

T�∗
0 (t− s)G(u(s))ds

)
,

but we have to verify that the integral does indeed belong to j(X).
The integral in (AIE) is to be interpreted in the weak∗-sense. More precisely, if Z

is a Banach space and f : [a, b]→Z∗ is weakly∗-continuous, then
∫ b

a
f(t)dt is defined

as the continuous linear functional on Z which takes z ∈ Z to
∫ b

a
〈z, f(t)〉dt. Note

that
∫ b

a
f(t)dt is an element of Z∗. For weak∗ integrals of the form

v(t) =

∫ t

0

T�∗
0 (t− s)f(s)ds,

we have the following desirable result.
Proposition 2.2 (see [9, Theorem 3.2]). If f is weakly∗-continuous, then v is

weakly∗-continuous with values in X�∗. If f is norm continuous, then v is norm
continuous as well and takes values in X��.

We now consider (AIE). If G is globally Lipschitz continuous, then standard
contraction mapping arguments yield existence and uniqueness of a solution u(· ;ϕ) :
R+ →X of (AIE) for every ϕ ∈ X. The formula

Σ(t)ϕ := u(t;ϕ), t ≥ 0, ϕ ∈ X,(2.8)

defines a strongly continuous nonlinear semigroup Σ on X. The generator of Σ, which
we denote by C, is defined exactly as in the linear case: Its domain D(C) is the set
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of all ϕ ∈ X for which the limit limt↓0(Σ(t)ϕ − ϕ)/t exists in the norm topology of
X and Cϕ is equal to this limit. The weak∗ generator C× of Σ is defined as follows:
ϕ ∈ X belongs to D(C×) if (jΣ(t)ϕ − jϕ)/t converges to some ϕ�∗ ∈ X�∗ as t ↓ 0
and in this case C×ϕ = ϕ�∗.

Theorem 2.3 (see [11, Theorems 3.2–3.6]).
(a) j (D(C×)) = D(A�∗

0 ) and C×ϕ = A�∗
0 jϕ + G(ϕ).

(b) C is the part of C× in X, that is,

D(C) =
{
ϕ ∈ X : ϕ ∈ D(C×), C×ϕ ∈ j(X)

}
,

Cϕ = j−1
(
C×ϕ

)
.

(c) If ϕ ∈ D(C) and if G is continuously Fréchet differentiable, then t 	→ u(t;ϕ) =
Σ(t)ϕ is continuously differentiable and

d

dt
u(t;ϕ) = j−1

(
A�∗

0 ju(t;ϕ) + G(u(t;ϕ))
)
.

2.3. Linearization around a steady state. In what follows we assume that
the nonlinear operator G : X→X�∗ is continuously Fréchet differentiable.

Assume that ϕ ∈ X is a steady state of the nonlinear dynamical system; that is,

Σ(t)ϕ = ϕ(2.9)

for all t ≥ 0. Equivalently, jϕ ∈ D(A�∗
0 ) and

A�∗
0 jϕ + G(ϕ) = 0;(2.10)

cf. Theorem 2.3(c). Because G : X→X�∗ is Fréchet differentiable at ϕ, its Fréchet
derivative B := G′(ϕ) is a bounded linear operator from X to X�∗. Formal lineariza-
tion of (AIE) yields the following linear abstract integral equation:

(LAIE) T (t)ϕ = T0(t)ϕ + j−1

(∫ t

0

T�∗
0 (t− τ)BT (τ)ϕdτ

)
.

For such equations the following result is known.
Theorem 2.4 (see [9]). The linear abstract integral equation (LAIE) uniquely

defines a strongly continuous semigroup T = {T (t)}t≥0 of bounded linear operators
with generator A given by

D(A) = {ϕ ∈ X : jϕ ∈ D(A�∗
0 ), A�∗

0 jϕ + Bϕ ∈ j(X)},

Aϕ = j−1(A�∗
0 jϕ + Bϕ).

That the formal linearization yields the desired result is the content of the fol-
lowing theorem.

Theorem 2.5 (see [11]). Let (2.9) hold and assume that the nonlinear opera-
tor G : X→X�∗ is continuously Fréchet differentiable. Then for every t > 0 the
nonlinear operator Σ(t) is Fréchet differentiable at ϕ. Its Fréchet derivative

T (t) = (DΣ(t))(ϕ)(2.11)

defines a strongly continuous semigroup of bounded linear operators with generator A
given by

D(A) = {ϕ ∈ X : jϕ ∈ D(A�∗
0 ), A�∗

0 jϕ + G′(ϕ)ϕ ∈ j(X)},

Aϕ = j−1(A�∗
0 jϕ + G′(ϕ)ϕ).

Moreover, for every ϕ ∈ X, T (t)ϕ is the unique solution of (LAIE) with B = G′(ϕ).
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2.4. Eventual compactness and spectral analysis of the linearized semi-
group. In subsection 2.6 we shall deal with criteria for the stability of a steady state.
As is well known from the theory of ordinary differential equations (ODEs), spectral
analysis of the linearized system is a most efficient tool for investigating stability.
Therefore we shall in this subsection analyze the spectrum of the generator A of the
semigroup T defined by (LAIE).

Our original nonlinear problem is meaningful only for real Banach spaces, whereas
spectral analysis requires complex scalars. We therefore have to complexify X before
doing spectral analysis. In the infinite dimensional case and, in particular, in our
sun-star-framework, this is not a trivial task. We shall, however, omit the details
because they can all be found in [23, section III.7].

As usual, we denote the resolvent set and the spectrum of a linear operator L by

(L) and σ(L), respectively. The point spectrum of L, that is, the set of eigenvalues
of L, is denoted by Pσ(L). The identity operator is denoted by E (to follow the
tradition of Hilbert [14, formula (8), p. 5] and to avoid confusion with the input I of
(1.17)), and Laplace transformation is denoted by ̂:

f̂(λ) =

∫ ∞

0

e−λtf(t)dt.(2.12)

R(λ,L) denotes the resolvent operator of L:

R(λ,L) := (λE − L)
−1

, λ ∈ 
(L).(2.13)

Recall that λ 	→ R(λ,L) is a holomorphic operator-valued function on 
(L). As for
complex valued functions, an operator-valued function is entire if it is holomorphic in
the whole complex plane.

The growth bound ω0(T ) of a semigroup T is defined by

ω0(T ) = inf{ω ∈ R : ∃Mω ≥ 1 such that ‖T (t)‖ ≤ Mωe
ωt for all t ≥ 0},

and the spectral bound s(A) of its generator A is defined by

s(A) = sup {Reλ : λ ∈ σ(A)} .

One has σ(A) = σ(A∗) = σ(A�) = σ(A�∗), s(A) = s(A∗) = s(A�) = s(A�∗), and
ω0(T ) = ω0(T

∗) = ω0(T
�) = ω0(T

�∗) [26, Proposition 2.18, p. 262].
We start by characterizing the part of the point spectrum which belongs to 
(A0).
Proposition 2.6. Let A be the generator of the semigroup T defined by (LAIE);

cf. Theorem 2.4. Then λ ∈ 
(A0) is an eigenvalue of A if and only if 1 is an
eigenvalue of j−1R(λ,A�∗

0 )B and the corresponding eigenvectors are the same.
Proof. Let ψ ∈ X. Using Theorem 2.4 we see that in the following sequence of

identities, each implies both the preceding and the next one:

j−1R(λ,A�∗
0 )Bψ = ψ,

jψ ∈ D(A�∗
0 ) and Bψ =

(
λE −A�∗

0

)
jψ,

jψ ∈ D(A�∗
0 ) and A�∗

0 jψ + Bψ = λjψ,

jψ ∈ D(A�∗
0 ) and j−1

(
A�∗

0 jψ + Bψ
)

= λψ,

ψ ∈ D(A) and Aψ = λψ.
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If the semigroup T is eventually compact, that is, if the operators T (t) are compact
for all t greater than some t0 ≥ 0, then spectral analysis becomes as easy as one can
possibly expect from an infinite dimensional system.

Theorem 2.7. Let A generate an eventually compact C0-semigroup T on the
Banach space X. Then

σ(A) = Pσ(A),

s(A) = ω0(T ),

and every λ ∈ σ(A) is a pole of the resolvent R(λ,A) of finite algebraic multiplicity.
Every right half-plane {λ ∈ C : α ≤ Reλ} (−∞ < α) contains at most finitely many
eigenvalues of A.

For a proof of this well-known result, see, e.g., [2, Theorem 2.1, p. 209].
Next we give a criterion for the eventual compactness of the perturbed semigroup

which is easy to check and which applies to all our applications.
Theorem 2.8. Let T0 be an eventually compact C0-semigroup and let B :

X→X�∗ be compact. Then the C0-semigroup T defined by (LAIE) is eventually
compact.

The corresponding result for the case in which B maps X into X is known [26,
Proposition 1.14, p. 166], but Theorem 2.8 does not seem to have been stated in the
literature yet. We therefore give a complete proof in the appendix.

2.5. Perturbations with finite dimensional range. If, as in the case of the
delay problem (DE), (IC), the nonlinear perturbation G has finite dimensional range
in X�∗, much of the analysis becomes considerably simpler, in fact, essentially finite
dimensional. We therefore have a closer look at this special case. So let G : X→X�∗

have the form

G(ϕ) =

N∑
i=1

Fi(ϕ)r�∗
i , ϕ ∈ X,(2.14)

where F = (F1, F2, . . . , FN ) is a mapping from X to RN and {r�∗
1 , r�∗

2 , . . . , r�∗
N } is a

linearly independent set in X�∗.
Note. In what follows we shall use the letter j both as a summation index and,

as before, to denote the canonical embedding of X into X�∗, sometimes even in the
same formula. This should not lead to any misunderstanding.

Clearly G is Fréchet differentiable at ϕ if and only if F is Fréchet differentiable
at ϕ, which is the case if and only if all the components Fi are Fréchet differentiable
at ϕ. So when G is Fréchet differentiable at ϕ, there exist elements r∗1 , r

∗
2 , . . . , r

∗
N of

X∗ such that the derivative G′(ϕ) is the linear operator B : X→X�∗ given by

Bϕ =

N∑
i=1

〈ϕ, r∗i 〉r�∗
i , ϕ ∈ X.(2.15)

In order to exploit the finite dimensional structure of the perturbation we define

ri(λ) = j−1R(λ,A�∗
0 )r�∗

i , λ ∈ 
(A0),(2.16)

r�i (λ) = R(λ,A∗
0)r

∗
i , λ ∈ 
(A0),(2.17)
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and let M(λ) be the matrix with entries

Mij(λ) = 〈rj(λ), r∗i 〉, λ ∈ 
(A0).(2.18)

Note that the matrix-valued function M is defined in 
(A0) only. When the real part
of λ is greater than the growth bound of T0, we can express ri(λ) and r�i (λ) using
the Laplace transform representation of the resolvent [26, Theorem 1.10, p. 55]:

ri(λ) = j−1

∫ ∞

0

e−λtT�∗
0 (t)r�∗

i dt, Reλ > ω0(T0),(2.19)

r�i (λ) =

∫ ∞

0

e−λtT ∗
0 (t)r∗i dt, Reλ > ω0(T0).(2.20)

We start with a few lemmas.
Lemma 2.9. Let M be the matrix-valued function defined by (2.18). Then

Mij(λ) =
〈
r�i (λ), r�∗

j

〉
, λ ∈ 
(A0).(2.21)

Proof. We first prove the claim for Reλ > ω0(T0) using the representations (2.19)
and (2.20). If r∗i ∈ X�, the equality of the right-hand sides of (2.18) and (2.21) is
clear from the definition of the weak∗-integral. Next we approximate r∗i by

ϕ�
s =

1

s

∫ s

0

T ∗
0 (τ)r∗i dτ, s > 0.

It follows from Proposition 2.2 (just interchange the roles of X and X�) that ϕ�
s ∈ X�

for all s > 0. By the observation made above, one has〈
j−1

∫ ∞

0

e−λtT�∗
0 (t)r�∗

i dt, ϕ�
s

〉
=

〈∫ ∞

0

e−λtT�
0 (t)ϕ�

s dt, r
�∗
i

〉
(2.22)

for all s > 0. A straightforward calculation (see the proof of Lemma 2.17 in [23, p. 61]
for a very similar case) shows that the left-hand side of (2.22) converges to (2.18) and
that the right-hand side of (2.22) converges to the right-hand side of (2.21). This
proves the assertion for the case Reλ > ω0(T0). The general case follows from the
resolvent identity.

When B has finite dimensional range we get a more detailed description of the
point spectrum of A than we do in Proposition 2.6.

Lemma 2.10. Let A be the generator of the semigroup T defined by (LAIE) and
assume that B has the form (2.15). If λ ∈ 
(A0) and ψ ∈ X, then

Aψ = λψ(2.23)

if and only if

ψ =
N∑
i=1

ciri(λ),(2.24)

where the coefficients ci are the components of a vector c satisfying

M(λ)c = c(2.25)
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and M(λ) is the matrix defined by (2.18).
Proof. By Proposition 2.6, Aψ = ψ if and only if

j−1R(λ,A�∗
0 )Bψ = ψ.(2.26)

Because the vectors r�∗
1 , r�∗

2 , . . . , r�∗
N are linearly independent and j−1R(λ,A�∗

0 ) is
one-to-one, the definition (2.16) shows that also the vectors r1(λ), r2(λ), . . . , rN (λ) are
linearly independent. Equation (2.26) shows that ψ belongs to the subspace spanned
by the vectors ri(λ), i = 1, 2, . . . , N ; that is, ψ is of the form (2.24). Substituting
(2.24) into (2.26), one obtains (2.25).

The following dual version of Lemma 2.10 is proved analogously.
Lemma 2.11. Let A be the generator of the semigroup T defined by (LAIE) and

assume that B has the form (2.15). If λ ∈ 
(A0) and ψ� ∈ X�, then

A∗ψ� = λψ�(2.27)

if and only if

ψ� =

N∑
i=1

dir
�
i (λ),(2.28)

where the coefficients di are the components of a row vector d satisfying

dM(λ) = d(2.29)

and M(λ) is the matrix defined by (2.18).
Lemma 2.12. The mapping λ 	→ 〈rj(λ), r∗i 〉 is holomorphic in 
(A0) and

d

dλ
〈rj(λ), r∗i 〉 = −

〈
rj(λ), r�i (λ)

〉
, λ ∈ 
(A0).(2.30)

Proof. Using the resolvent identity, one finds that

1

λ− μ
(〈rj(λ), r∗i 〉 − 〈rj(μ), r∗i 〉) = −

〈
j−1R(λ,A�∗

0 )R(μ,A�∗
0 )r�∗

j , r∗i
〉

= −
〈
j−1R(μ,A�∗

0 )r�∗
j , R(λ,A∗

0)r
∗
i

〉
= −

〈
rj(μ), r�i (λ)

〉
,

which proves the assertion.
As a direct consequence of the three preceding lemmas we obtain the following

result.
Corollary 2.13. The matrix-valued function λ 	→ M(λ) is holomorphic in


(A0), and if λ is an eigenvalue of A with eigenvector ψ and adjoint eigenvector ψ�,
then 〈

ψ,ψ�〉 = −dM ′(λ)c, λ ∈ 
(A0),(2.31)

where c and d are as described in Lemmas 2.10 and 2.11, respectively.
Corollary 2.13 provides a convenient criterion for the simplicity of an eigenvalue,

which we shall use in the context of the Hopf bifurcation theorem to be treated
in subsection 2.8. In the present subsection we shall show that when B has finite
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dimensional range, there exists a so-called characteristic equation, the roots of which
are the eigenvalues of the generator of the perturbed semigroup. It turns out that the
order of λ as a root of the characteristic equation equals the algebraic multiplicity of
λ as an eigenvalue of A. An easy way to show this is to use the theory of Weinstein–
Aronszajn determinants; see [43, section IV.6] for an account of the general theory
and [22] for an application to perturbed dual semigroups. Before we can present the
Weinstein–Aronszajn formula we have to define the multiplicity functions for closed
operators and meromorphic functions.

Let L be a closed operator in a Banach space. For every isolated point λ of σ(L)
we denote the spectral projection onto the corresponding generalized eigenspace by
Pλ. The multiplicity function ν̃(λ,L) of L is defined as

ν̃(λ,L) =

⎧⎨⎩ 0 if λ ∈ 
(L),
dimR(Pλ) if λ is an isolated point of σ(L),
∞ in all other cases.

(2.32)

The multiplicity function of a (numerical) meromorphic function f is defined as

ν(λ, f) =

⎧⎨⎩ k if λ is a zero of order k of f,
−k if λ is a pole of order k of f,
0 otherwise.

(2.33)

Theorem 2.14 (Weinstein–Aronszajn formula). Let A be the generator of the
semigroup T defined by (LAIE), assume that B has the form (2.15), and let M(λ) be
the matrix-valued function defined in (2.18). Then

ν̃(λ,A) = ν̃(λ,A0) + ν (λ,det (E −M(λ))) .(2.34)

Proof. Because B has finite dimensional range one can unambiguously define
the so-called Weinstein–Aronszajn determinant det

(
E −BR

(
λ,A�∗

0

))
as the deter-

minant of the restriction of E −BR
(
λ,A�∗

0

)
to R(B). The definition of M together

with Lemma 2.9 shows that

det
(
E −BR

(
λ,A�∗

0

))
= det (E −M(λ)) .

The Weinstein–Aronszajn formula [43, Theorem IV.6.2] now yields

ν̃(λ,A�∗) = ν̃(λ,A�∗
0 ) + ν (λ,det (E −M(λ))) .(2.35)

But A0 (resp., A) is the part of A�∗
0 (resp., A�∗) in j(X), and hence it follows from

[26, Lemma 1.15, p. 245 and Proposition 2.17, p. 261] that

ν̃(λ,A�∗
0 ) = ν̃(λ,A0),

ν̃(λ,A�∗) = ν̃(λ,A),

from which the conclusion (2.34) follows.
We are now ready to prove the following theorem.
Theorem 2.15. Let A be the generator of the semigroup T defined by (LAIE).

Suppose that B has the form (2.15) and let M be the corresponding matrix-valued
function defined by (2.18). Then λ ∈ 
(A0) is in σ(A) if and only if

det(E −M(λ)) = 0,(2.36)
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where E denotes the N×N identity matrix. Moreover, when this is the case, λ belongs
to Pσ(A) and the algebraic multiplicity of λ equals the order of λ as a root of (2.36).

In particular, if σ(A0) = ∅, then

σ(A) = Pσ(A) = {λ ∈ C : det (E −M(λ)) = 0} .(2.37)

Proof. Taking the Laplace transform of (LAIE), one obtains

R(λ,A) = R(λ,A0) + j−1R(λ,A�∗
0 )BR(λ,A)

or (
E − j−1R(λ,A�∗

0 )B
)
R(λ,A) = R(λ,A0).(2.38)

From (2.38) we deduce that if λ ∈ 
(A0), then λ ∈ σ(A) if and only if

E − j−1R(λ,A�∗
0 )B

is not invertible. But because j−1R(λ,A�∗
0 )B is a bounded linear operator X→X

with finite dimensional range, this is the case if and only if 1 is an eigenvalue of
j−1R(λ,A�∗

0 )B. According to Proposition 2.6, this in turn is equivalent to λ being
an eigenvalue of A, which by Lemma 2.10 is equivalent to 1 being an eigenvalue of
M(λ). This shows that λ ∈ σ(A) if and only if λ is a root of (2.36) and that then
λ ∈ Pσ(A).

Since ν̃(λ,A0) is zero, the assertion concerning the multiplicity of λ follows from
Theorem 2.14.

The final assertion is obvious, because if σ(A0) is empty, then the basic assumption
λ ∈ 
(A0) is automatically satisfied.

Equation (2.36) is called the characteristic equation.
Remark 2.16. It was shown in [9, Lemma 5.1] that there exists a matrix-valued

function k ∈ L∞
loc(R+,R

N×N ) such that〈
j−1

(∫ t

0

T�∗
0 (t− τ)r�∗

j η(τ)dτ

)
, r∗i

〉
=

∫ t

0

kij(t− τ)η(τ)dτ

for all η ∈ L1
loc(R+). From this it follows easily that

k̂(λ) = M(λ), λ ∈ 
(A0),

where M is the matrix-valued function defined by (2.18). The characteristic equation
can thus be rewritten as

det
(
E − k̂(λ)

)
= 0.(2.39)

In subsection 3.4 we shall compute the matrix k explicitly in the concrete case con-
nected to (DE).

Using properties of the Laplace transform and holomorphic functions (in par-
ticular, the Riemann–Lebesgue lemma and the fact that the zeros of holomorphic
functions have no limit points) it is possible to prove directly (in the case σ(A0) = ∅)
that there are only finitely many eigenvalues in each right half-plane. But because we
obtain this result from Theorem 2.7 in all our applications, we have refrained from
stating it in Theorem 2.15.
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As the proof of Theorem 2.15 shows, the existence of a characteristic equation
depends on two facts: the analyticity in the whole complex plane of the resolvent
of the generator A0 of the unperturbed semigroup and the finite dimensionality of
the range of the perturbation. We shall later encounter applications where R(λ,A0)
has a simple pole at the origin. Anticipating this situation, we next show that the
corresponding singularity of R(λ,A) is removable and that we still get a characteristic
equation.

Theorem 2.17. Let B be given by (2.15) and assume that

R(λ,A�∗
0 ) =

1

λ
PH1(λ) + (E − P )H2(λ),(2.40)

where P : X�∗ →X�∗ is a projection with finite dimensional range in j(X), H1 and
H2 are entire functions with values in L(X�∗), and the range of H2(λ) is in j(X).
Then σ(A) = Pσ(A), and there exists an entire matrix-valued function Δ such that
λ ∈ σ(A) if and only if

det Δ(λ) = 0.(2.41)

Proof. The assumption (2.40) implies that

j−1R(λ,A�∗
0 )B =

(
E − j−1Pj +

1

λ
j−1Pj

)
K(λ)(2.42)

for the entire function K defined by

K(λ)ϕ =

N∑
i=1

〈ϕ, r∗i 〉 j−1 (PH1(λ) + (E − P )H2(λ)) r�∗
i

with values in the subspace of finite rank operators of L(X). It follows (cf. (2.38))
that (

E −
(
E − j−1Pj +

1

λ
j−1Pj

)
K(λ)

)
R(λ,A)(2.43)

= j−1

(
1

λ
PH1(λ) + (E − P )H2(λ)

)
j.

If one multiplies (2.43) by E − j−1Pj + λj−1Pj, one obtains

(2.44)

(E − j−1Pj + λj−1Pj −K(λ))R(λ,A) = j−1 (PH1(λ) + (E − P )H2(λ)) j.

Because the right-hand side of (2.44) is entire, R(λ,A) is holomorphic everywhere
except at the points where (E − j−1Pj + λj−1Pj −K(λ)) is not invertible. Because
j−1Pj−λj−1Pj+K(λ) has finite dimensional range and is everywhere holomorphic,
it follows as in the proof of Theorem 2.15 that there is an entire matrix Δ(λ) such that
(E − j−1Pj + λj−1Pj −K(λ)) is not invertible if and only if Δ(λ) is not invertible,
that is, if and only if (2.41) holds.
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2.6. Linearized stability. Recall that a steady state ϕ of Σ is (locally) stable
if for every ε > 0 there exists a δ > 0 such that

‖Σ(t)ϕ− ϕ‖ ≤ ε for all t ≥ 0

whenever ‖ϕ − ϕ‖ ≤ δ. If ϕ is not stable, it is unstable. It is (locally) exponentially
stable if there exist numbers δ > 0, K > 0, α > 0 such that

‖Σ(t)ϕ− ϕ‖ ≤ Ke−αt, t ≥ 0,

for all ϕ with ‖ϕ− ϕ‖ ≤ δ.
The next result is called the principle of linearized stability. It has two parts. The

first states that if the growth bound of the linearized semigroup is negative, then the
steady state is exponentially stable. The second part states that if the generator of
the linearized semigroup has at least one eigenvalue of finite multiplicity with positive
real part, then the steady state is not stable.

Theorem 2.18 (see [19], [11, Theorems 4.2 and 4.3], [23, Corollary 5.12]). Let
Σ be a strongly continuous nonlinear semigroup. Let ϕ be a steady state of Σ and
assume that for each t ≥ 0, Σ(t) has a (uniform) Fréchet derivative T (t) at ϕ. Let A
be the infinitesimal generator of T . Assume further that X admits a decomposition

X = X− ⊕X+

into two T (t)-invariant subspaces X− and X+ such that
(i) X+ is finite dimensional,
(ii) the restriction of T (t) to X− converges exponentially to 0 as t→∞.

Then ϕ is
(a) (locally) exponentially stable if Re λ < 0 for all λ ∈ σ(A

∣∣
X+

),

(b) unstable if there exists a λ ∈ σ(A
∣∣
X+

) with Re λ > 0.

Note that if ω0(T ) < 0, then (i) and (ii) are satisfied with X+ equal to the trivial
subspace {0}, and hence ϕ is exponentially stable because σ(A

∣∣
X+

) is empty.

Theorem 2.5 shows that the differentiability assumption of Theorem 2.18 is indeed
satisfied for the semigroup Σ generated by the abstract integral equation (AIE).

When applied to the nonlinear semigroup Σ generated by the abstract integral
equation (AIE), Theorem 2.18 becomes particularly simple to apply if T0 is eventu-
ally compact and G′(ϕ) is compact (in particular if G has finite dimensional range).
Indeed, Theorem 2.7 immediately implies the following corollary.

Corollary 2.19. Assume that G : X→X�∗ is continuously Fréchet differen-
tiable. Let Σ be the nonlinear semigroup “generated” by (AIE) (i.e., defined through
(2.8)) and let A be the generator of the linearized semigroup T as in Theorem 2.5.
Let ϕ be a steady state of Σ.

If T0 is eventually compact and if G′(ϕ) is compact, then ϕ is locally exponentially
stable if all λ ∈ σ(A) have real part less than zero, whereas if there exists at least one
λ ∈ σ(A) with positive real part, then ϕ is unstable.

Proof. By Theorem 2.8 T is eventually compact, and hence the growth bound
equals the spectral bound (Theorem 2.7). Thus, if all λ ∈ σ(A) = Pσ(A) have
negative real part, then ω0(T ) < 0 and, as noted after Theorem 2.18, ϕ is exponentially
stable. If there exists an eigenvalue with positive real part, there exist finitely many
eigenvalues with positive real part, and they all have generalized eigenspaces of finite
dimension (Theorem 2.7). Therefore there exists a decomposition as in Theorem 2.18
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with X+ finite dimensional and a λ ∈ σ(A
∣∣
X+

) with Re λ > 0. An application of

Theorem 2.18 completes the proof.

We close this section by applying a version of the argument principle [52, Theorem
10.43(a)], also known as Nyquist’s theorem, to derive a very convenient criterion
for the (in)stability of steady states in the case where the perturbation has finite
dimensional range and we have a characteristic equation. Nyquist’s theorem states
that if the matrix-valued function k belongs to L1(R+) and satisfies det

(
E− k̂(iω)

)
�=

0 for all ω ∈ R, then the number of zeros of det
(
E− k̂(λ)

)
in the open right half-plane

Reλ > 0, counted according to their multiplicities, equals the index IndΓ(0) of the

curve Γ : ω 	→ det
(
E − k̂(iω)

)
, where ω runs from +∞ to −∞ [29, Theorem 6.3,

p. 61]. Recall the geometrical interpretation of the index IndΓ(0): it is the number
of times the curve Γ winds counterclockwise around the origin as ω runs from +∞ to
−∞.

Corollary 2.20. Assume in addition to the hypotheses of Corollary 2.19 that

T0 is nilpotent and that G has finite dimensional range. Let M(λ) = k̂(λ) be the
matrix-valued function as defined by (2.18) and Remark 2.16 and let Γ be the curve
defined above. If the characteristic equation (2.39) has no roots on the imaginary axis,
then ϕ is exponentially stable if IndΓ(0) = 0 and unstable if IndΓ(0) > 0.

Proof. The nilpotency of T0 implies that k has compact support and hence
(being locally L∞) belongs to L1(R+). The conclusion now follows from Nyquist’s
theorem.

The assumption that T0 is nilpotent is much stronger than is actually needed, but
it is a convenient assumption that is satisfied in many applications (including struc-
tured populations with a maximum individual life span). The key point is that when
we extend the argument principle from integration along closed curves to integration
along the imaginary axis, we need to control the behavior of the integrand at infinity.
The assumption k ∈ L1 makes the Riemann–Lebesgue lemma valid and gives an easy
estimate of the behavior at infinity.

The stability criterion of Corollary 2.20 is easy to implement numerically and even
graphically. By the Riemann–Lebesgue lemma, k̂(iω) tends to 0 as ω→ ± ∞, and

hence det
(
E−k̂(iω)

)
tends to 1 as ω→±∞. Choose ω0 so large that det

(
E−k̂(iω0)

)
is close to 1 for |ω| > ω0 and plot det

(
E − k̂(iω)

)
as ω runs from +iω0 to −iω0. If

the plotted curve does not wind around the origin, then ϕ is exponentially stable;
otherwise it is unstable. If the curve passes through the origin, the test does not give
any information.

2.7. The unstable, stable, and center manifolds. It is possible to give a
more detailed description of the behavior near an unstable steady state. For the
linearized semigroup, one has, provided that the characteristic equation has no roots
on the imaginary axis, a direct sum spectral decomposition into a finite dimensional
unstable subspace X+ and an infinite dimensional stable subspace X−. On X+ one
can go backwards in time. As a matter of fact, X+ is characterized by the property
that the orbit through a point in X+ can be extended in the negative time-direction
to −∞ and that the α-limit set equals {0}. Similarly, X− consists of precisely those
points that have {0} as ω-limit set. A general orbit shows saddle-point behavior: It
may come close to 0 but will eventually move far away and, if it can be extended in
the negative time-direction, it will also move far away in that direction.

One can construct a finite dimensional local unstable manifold Wu as the graph
of a smooth function from X+ to X−, shifted to ϕ. The manifold Wu is invariant,
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and the tangent space at ϕ is exactly X+. Moreover, an orbit starting in a sufficiently
small ball around ϕ can be extended to t = −∞ with α-limit set equal to {ϕ} if and
only if it starts (and hence remains) in Wu. We refer to [23, Chapter VIII] for precise
formulations (see in particular Theorems 4.4 and 4.7 and Corollary 4.11). Similarly,
one can construct and characterize the local stable manifold Ws [23, Chapter VIII,
Theorem 6.1].

If A does have a spectrum on the imaginary axis, the spectral decomposition in-
volves a third component X0, which in the setting of Theorem 2.15 or Theorem 2.17
is finite dimensional. The orbits of the linearized semigroup that start in X0 are
characterized by the fact that they grow at most polynomially as t→ ±∞ (note that
in X0 orbits can be extended to t = −∞). As this characterization is more difficult
to work with, the construction of the corresponding center manifold for the nonlin-
ear semigroup (and the proof of its smoothness) is much more involved. Moreover,
modification of the nonlinearity outside a small ball around ϕ plays a role in the con-
struction and as a consequence the center manifold is not unique (yet it will contain
all solutions which are defined for all times and remain inside the small ball for all
times). We refer to [23, Chapter IX] for detailed formulations and proofs that apply
verbatim to the setting of Theorem 2.15 or Theorem 2.17.

A situation of particular interest is the case that the nonlinear semigroup depends
on a parameter and that for a specific value of this parameter, the characteristic
equation (2.39) has a pair of simple roots on the imaginary axis (note that since the

kernel k takes on real values, k̂(−iω) = k̂(iω), and hence complex roots of (2.39)
occur in conjugate pairs). Under some further mild genericity conditions one then
finds periodic orbits for nearby parameter values. Chapter X of [23] gives a detailed
treatment of this so-called Hopf bifurcation in the setting of exactly the abstract
integral equation (AIE) that we consider here. We present the main result in the next
subsection and at the end of subsection 3.4 we shall briefly indicate how to obtain a
corollary for Volterra functional equations.

2.8. Hopf bifurcation. In this subsection we consider Hopf bifurcation under
the assumption that the nonlinear perturbation G : X→X�∗ has finite dimensional
range, which does not depend on the bifurcation parameter θ. So G is of the form

G(ϕ, θ) =

N∑
i=1

Fi(ϕ, θ)r
�∗
i ,(2.45)

and its derivative with respect to ϕ at 0 is

B(θ)ϕ =
N∑
i=1

〈ϕ, r∗i (θ)〉 r�∗
i .(2.46)

Note carefully that now the vector r∗i depends on the bifurcation parameter θ, as do
the vector r�i (λ) and the matrix M(λ) introduced in (2.17) and (2.18), respectively:

Mij(λ, θ) = 〈rj(λ), r∗i (θ)〉 =
〈
r�i (λ, θ), r�∗

j

〉
.(2.47)

In order to have Hopf bifurcation, we need to make sure that a conjugate pair ±iω0

of simple eigenvalues crosses the imaginary axis with positive speed as the bifurcation
parameter θ passes some value θ0. (Note: The real number ω0 used in this subsection
has of course nothing to do with the growth bound of a semigroup. We use the same
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symbol to denote two unrelated numbers because in both cases the usage conforms
with common practice. No confusion is expected to arise.)

The simplicity of the eigenvalues is, by Corollary 2.13 and Theorem 2.15, ensured
by the condition 〈

ψ(θ0), ψ
�(θ0)

〉
= −d(θ0)

∂M

∂λ
(iω0, θ0)c(θ0) �= 0.(2.48)

The condition of crossing the imaginary axis with positive speed means more precisely
that

Reλ′(θ0) �= 0,(2.49)

where λ(θ) is a branch of eigenvalues through iω0 at θ = θ0. To derive a verifiable
form of this condition, let c(θ) and d(θ) be the right and left eigenvectors, respectively,
of M(λ, θ) normalized by

|c(θ)| =

N∑
i=1

|ci(θ)| = 1,(2.50)

d(θ)c(θ) = 1.(2.51)

Differentiating the equation

d(θ)M(λ, θ)c(θ) = 1

implicitly with respect to θ, one obtains

d

dθ
(d(θ)c(θ)) + d(θ)

∂M

∂θ
c(θ) + d(θ)

∂M

∂λ
c(θ)λ′(θ) = 0.(2.52)

It now follows from (2.51) and Corollary 2.13 that

d(θ)
∂M

∂θ
(λ(θ), θ)c(θ) =

〈
ψ(θ), ψ�(θ)

〉
λ′(θ).(2.53)

From (2.48) and (2.53) we deduce that (2.49) holds if and only if

Re d(θ0)
∂M

∂θ
(iω0, θ0)c(θ0) �= 0.(2.54)

We are now ready to formulate the Hopf bifurcation theorem.
Theorem 2.21 (Hopf bifurcation theorem, [23, Theorem 2.6, p. 290]). Consider

the abstract integral equation

(AIE) u(t) = T0(t− s)u(s) + j−1

∫ t

s

T�∗
0 (t− τ)G(u(τ), θ)dτ, −∞ < s ≤ t < ∞,

and assume that the following hold:
(H1) G(ϕ, θ) =

∑N
i=1 Fi(ϕ, θ)r

�∗
i , F : X × R→RN is Ck, k ≥ 2.

(H2) F (0, θ) = 0 for all θ.
(H3) D1G(0, θ) = B(θ) with B(θ) defined by (2.46). The corresponding matrix

M(λ, θ) has for λ = ±iω0, θ = θ0, eigenvalue 1 with right eigenvector c(θ0)
and left eigenvector d(θ0) and d(θ0)

∂
∂λM(iω0, θ0)c(θ0) �= 0. For θ = θ0, no

root of the characteristic equation det(E −M(λ)) = 0 other than λ = ±iω0

belongs to iω0Z.
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(H4) Re d(θ0)
∂
∂θM(iω0, θ0)c(θ0) �= 0.

There exist Ck−1 functions ε 	→ θ̃(ε), ε 	→ ψ̃(ε), and ε 	→ ω̃(ε) with values in R,
X, and R, respectively, defined for ε sufficiently small, such that the solution of

(AIE) with u(0) = ψ̃(ε) is 2π/ω̃(ε) periodic. Moreover, θ̃ and ω̃ are even functions,

θ̃(0) = θ0, ω̃(0) = ω0, ψ̃(−ε) = ψ̃(ε + π
ω̃(ε) ). If u(t) is any small periodic solution of

(AIE) for θ close to θ0 and period close to 2π/ω0, then necessarily θ = θ̃(ε) for some

ε and there exists σ ∈ [0, 2π/ω̃(ε)) such that u(σ) = ψ̃(ε). If for θ = θ0 all roots λ of
the characteristic equation

det(E −M(λ, θ0)) = 0

other than ±iω0 lie in the left half-plane and Re d(θ0)
∂
∂θM(iω0, θ0)c(θ0) < 0, then

the periodic solution is, for ε sufficiently small, asymptotically stable with asymptotic
phase if θ̃(ε) > θ0 and unstable if θ̃(ε) < θ0.

Remark 2.22. In order to determine the direction of the bifurcation one has to
compute the second derivative of θ̃. How this is done is explained in [23, section X.3].

3. Volterra functional equations.

3.1. Unperturbed semigroup for systems of delay equations. We let h
denote a positive real number and N a positive integer. X = L1

(
[−h, 0];RN

)
is the

space of all (equivalence classes of) RN -valued measurable functions ϕ defined and
absolutely integrable on [−h, 0] (i.e., each component ϕi, i = 1, 2, . . . , N , is absolutely
integrable) with norm

‖ϕ‖1 :=

N∑
i=1

‖ϕi‖1.(3.1)

The dual space X∗ of X = L1
(
[−h, 0];RN

)
is represented by L∞ ([0, h];RN

)
, that

is, the space of (equivalence classes of) RN -valued essentially bounded measurable
functions g with norm

‖g‖∞ := max
1≤i≤N

‖gi‖∞(3.2)

via the duality pairing

〈ϕ, g〉 =

N∑
i=1

∫ 0

−h

ϕi(θ)gi(−θ)dθ, ϕ ∈ X, g ∈ X∗.(3.3)

In order to apply the general linear theory summarized in section 2, we take X
as above and consider the strongly continuous semigroup T0 defined by (1.7):

(T0(t)ϕ)(θ) :=

{
ϕ(t + θ) for t + θ ∈ [−h, 0],
0 for t + θ > 0,

ϕ ∈ X, t ≥ 0, θ ∈ [−h, 0].(3.4)

Note that T0 is nilpotent (T0(t) = 0 for t > h). In particular, T0 is eventually compact.
Remark 3.1. The explicit formula (3.4) makes it clear that equivalence classes

are mapped to equivalence classes, such that T0(t) is indeed an operator mapping
X into X. In line with common praxis, we will be sloppy when it comes to distin-
guishing elements of L1, namely equivalence classes, from their representatives. It
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is, however, important to note that an equivalence class is by definition absolutely
continuous if it contains an absolutely continuous function (that is, a function all the
components of which are absolutely continuous). We shall always use this absolutely
continuous function to represent an absolutely continuous equivalence class. As in
the introduction we shall use the notation ϕ ∈ AC to indicate that ϕ is absolutely
continuous.

The following characterization of the generator of T0 is well known, at least in
the case of scalar-valued functions [2, p. 11]. As the vector-valued case is not more
difficult, we present it without proof.

Proposition 3.2. The generator A0 of T0 is given by

D(A0) = {ϕ ∈ X : ϕ ∈ AC, ϕ(0) = 0},

A0ϕ = ϕ′.

Our next task is to characterize X�∗ and T�∗
0 and prove sun-reflexivity of X with

respect to T0 so that we can give a precise meaning to the abstract integral equation
(AIE) for the specific application we are considering. This is a rather straightforward
exercise. In the case of scalar-valued functions it is essentially carried out in [9], the
only difference being the way in which the spaces X∗, X�, X�∗ are represented. Be-
cause the smoothness and boundary conditions entering into the domains of definition
of the generators are defined componentwise, the vector-valued case does not present
any extra difficulties [27, Chapter 3]. We shall therefore give only a brief sketch of the
construction of X�∗ and T�∗

0 and a precise formulation of the result that we need.
With the chosen representation of X∗, the adjoint semigroup T ∗

0 is translation to
the left with extension by zero. Translation is clearly not continuous in L∞ (to see this,
just consider translation of any discontinuous function). The maximal subspace on
which T ∗

0 is strongly continuous is X� = C0

(
[0, h);RN

)
, the space of all continuous

RN -valued functions vanishing at h. This last condition derives, of course, from the
extension by zero of the translated function.

By the Riesz representation theorem, the dual X�∗ can be represented by
NBV((−h, 0]; RN ), the space of all RN -valued functions f , all the components of
which are of bounded variation, are continuous from the right, and vanish at 0. Note,
in particular, that f ∈ NBV

(
(−h, 0];RN

)
does not have a jump in −h and that this

is indicated by the half-open interval (−h, 0] of definition of f . The duality pairing
between X� = C0

(
[0, h);RN

)
and X�∗ = NBV

(
(−h, 0];RN

)
is given by the sum of

Riemann–Stieltjes integrals

〈g, f〉 =
N∑
i=1

∫ 0

−h

gi(−θ)fi(dθ), g ∈ X�, f ∈ X�∗,(3.5)

and the norm on X�∗ by

‖f‖NBV :=

N∑
i=1

‖fi‖NBV,(3.6)

where on the right-hand side ‖fi‖NBV denotes the total variation of fi.
The semigroup T�∗

0 is again translation to the left with extension by zero and
it is not strongly continuous on X�∗. It is strongly continuous precisely on X�� =
{f ∈ X�∗ : f ∈ AC} [4, 9]. By the definition (2.5) of the canonical injection j :
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X→X�∗ and the definitions (3.3) and (3.5) of the pairings between our particular
representations of X and X� and X� and X�∗, one obtains

N∑
i=1

∫ 0

−h

gi(−θ)(jϕ)i(dθ) = 〈g, jϕ〉 = 〈ϕ, g〉 =

N∑
i=1

∫ 0

−h

ϕi(θ)gi(−θ)dθ,

from which it follows that (jϕ)′ = ϕ or, equivalently,

j(ϕ)(θ) = −
∫ 0

θ

ϕ(τ)dτ, θ ∈ (−h, 0].(3.7)

Now it is well known [52, Theorem 8.18] that a function of bounded variation is
absolutely continuous if and only if it is the primitive of an L1-function. Thus j (X) =
X��; that is, X is sun-reflexive. We formulate the main conclusions as the following
proposition.

Proposition 3.3. The space X = L1
(
[−h, 0];RN

)
is sun-reflexive with respect

to the strongly continuous semigroup T0 of bounded linear operators defined by (3.4).
For ψ ∈ X�∗ = NBV((−h, 0];RN ), t ≥ 0, and θ ∈ [−h, 0] one has

(T�∗
0 (t)ψ)(θ) =

{
ψ(t + θ) for t + θ ∈ [−h, 0),
0 for t + θ ≥ 0.

(3.8)

The generator A�∗
0 of T�∗

0 is given by

D(A�∗
0 ) = {ϕ ∈ X�∗ : ϕ(θ) =

∫ 0

θ

ψ(α)dα for all θ ∈ [−h, 0]

and some ψ ∈ X�∗},(3.9)

A�∗
0 ϕ = −ψ(3.10)

or, in shorthand notation, A�∗
0 ϕ = ϕ′.

As a corollary to Proposition 3.3 we get a formula for the resolvent of A�∗
0 which

we state for later use.
Corollary 3.4. For f ∈ X�∗ = NBV((−h, 0];RN ) and λ ∈ C we have

(
j−1R

(
λ,A�∗

0

)
f
)
(θ) =

∫ 0

θ

eλ(θ−τ)f(dτ), θ ∈ [−h, 0].

Proof. By definition, R
(
λ,A�∗

0

)
f is the unique element ϕ ∈ D(A�∗

0 ) which
satisfies the equation

(λE −A�∗
0 )ϕ = f.(3.11)

By Proposition 3.3 there exists a ψ ∈ X�∗ such that

ϕ(θ) =

∫ 0

θ

ψ(α)dα, θ ∈ [−h, 0],(3.12)

and

A�∗
0 ϕ = −ψ.(3.13)
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Equation (3.11) therefore becomes

λ

∫ 0

θ

ψ(α)dα + ψ(θ) = f(θ), θ ∈ [−h, 0],(3.14)

which has the unique solution

ψ(θ) = −
∫ 0

θ

eλ(θ−τ)f(dτ), θ ∈ [−h, 0].(3.15)

The inverse of the canonical injection j defined by (3.7) is clearly differentiation.
Therefore

j−1R
(
λ,A�∗

0

)
f = j−1ϕ = ϕ′ = −ψ.(3.16)

The assertion now follows from (3.15) and (3.16).

3.2. The perturbed problem. In this subsection we show that with a specific
choice of perturbation G : X→X�∗, the perturbed problem, which, as we have
shown in section 2, amounts to the abstract integral equation (AIE), is equivalent to
the originally given delay equation (DE) and initial condition (IC). To this end, we
let F : X→RN be a nonlinear mapping and define G : X→X�∗ by

G(ϕ) =

N∑
i=1

Fi(ϕ)Hi,(3.17)

where Fi denotes the ith component of F for i = 1, . . . , N and Hi is defined by

Hi(θ) :=

{
ei for θ ∈ (−h, 0),
0 for θ = 0.

(3.18)

Here and in what follows {e1, e2, . . . , eN} is the standard basis of RN . Notice that G
has finite dimensional range spanned by {H1, H2, . . . , HN} in X�∗.

Next we compute the weak* integral in (AIE) when G is defined through (3.17)
and (3.18).

Lemma 3.5. Let T0 be the strongly continuous semigroup defined by (3.4). Then
for every η ∈ L1

loc(R+) and t ≥ 0 one has(∫ t

0

T�∗
0 (t− τ)η(τ)Hidτ

)
(θ) = −ei

∫ t

t+max{−t,θ}
η(σ)dσ, θ ∈ (−h, 0].

Proof. First notice that for 0 ≤ s < h one has

(
T�∗

0 (s)Hi

)
(θ) =

{
−ei for −h ≤ θ < −s,
0 for −s ≤ θ ≤ 0.

(3.19)

The NBV function T�∗
0 (s)Hi thus has a unit jump at θ = −s, and hence

〈
T�∗

0 (t)Hi, g
〉

=

∫ 0

−h

g(−θ)
(
T�∗

0 (s)Hi

)
(dθ) = gi(s)(3.20)
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for any continuous g. It follows that for 0 ≤ t ≤ h〈∫ t

0

T�∗
0 (t− s)η(s)Hids, g

〉
=

∫ t

0

η(s)gi(t− s)ds

=

∫ 0

−t

η(t + s)gi(−s)ds = 〈y, g〉 ,

where y is the absolutely continuous NBV function defined by

y(θ) =

{
−
∫ t

t+θ
η(s)ds for θ ≤ 0 ≤ 0,

−
∫ t

0
η(s)ds for −h ≤ θ < −t,

(3.21)

and the conclusion follows.
Applying this result to η(t) = Fi(u(t)), we get the following corollary.
Corollary 3.6. Let T0 be the strongly continuous semigroup defined by (3.4)

and let G : X→X�∗ be defined by (3.17) and (3.18). If u : [0, t)→X is continuous,
then (∫ t

0

T�∗
0 (t− s)G(u(s))ds

)
(θ) = −

∫ t

t+max{−t,θ}
F (u(s))ds(3.22)

for all θ ∈ [−h, 0].
Proof. Using Lemma 3.5, one computes(∫ t

0

T�∗
0 (t− s)G(u(s))ds

)
(θ) =

N∑
i=1

(∫ t

0

T�∗
0 (t− s)Fi(u(s))Hids

)
(θ)

= −
N∑
i=1

ei

∫ t

t+max{−t,θ}
Fi(u(s))ds = −

∫ t

t+max{−t,θ}
F (u(s))ds.

We are now ready to prove equivalence of solutions of the abstract integral equa-
tion

(AIE) u(t) = T0(t)ϕ + j−1

(∫ t

0

T�∗
0 (t− s)G(u(s))ds

)
and the delay problem

(DE) x(t) = F (xt), t > 0,

(IC) x0(θ) = ϕ(θ), θ ∈ [−h, 0].

For ease of formulation we consider global solutions, i.e., solutions defined for all
future times. It should, however, be evident that one can formulate and prove an
analogous result concerning local solutions.

Theorem 3.7. Let ϕ ∈ X = L1
(
[−h, 0];RN

)
be given.

(a) Suppose that x ∈ L1
loc

(
[−h,∞);RN

)
satisfies (DE) and (IC). Then the func-

tion u : [0,∞)→X defined by u(t) := xt is continuous and satisfies (AIE).
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(b) Suppose that there is a continuous map u : [0,∞)→X that satisfies (AIE).
Then the function x defined as

x(t) :=

{
ϕ(t) for t ∈ [−h, 0),
u(t)(0) for t ≥ 0

(3.23)

is an element of L1
loc

(
[−h,∞);RN

)
and satisfies (DE) and (IC).

Proof. (a) First, note that the continuity assertion follows from the fact that
translation is continuous in L1. Then, by (DE) and (IC) we get

u(t)(θ) − (T0(t)ϕ)(θ) =

{
0 for t + θ ∈ [−h, 0),
x(t + θ) for t + θ ≥ 0

(3.24)

=

{
0
F (xt+θ)

=

{
0 for t + θ ∈ [−h, 0),
F (u(t + θ)) for t + θ ≥ 0.

On the other hand, by Corollary 3.6 one gets

j−1

(∫ t

0

T�∗
0 (t− s)G(u(s))ds)

)
(θ) =

{
0 for t + θ ∈ [−h, 0),
F (u(t + θ)) for t + θ ≥ 0,

which equals (3.24), and therefore (AIE) holds.
(b) Suppose now that u satisfies (AIE). Then by Corollary 3.6 for t ≥ 0 one has

x(t) = u(t)(0) = j−1

(∫ t

0

T�∗
0 (t− s)G(u(s))ds

)
(0)

= − d

da

∫ t

t+max{−t,a}
F (u(s))ds|a=0(3.25)

= F (u(t)).

Hence it remains to be shown that u(t) = xt. Using (AIE), Corollary 3.6, and (3.25),
one computes for θ ∈ [−h, 0] that

u(t)(θ) =

{
ϕ(t + θ) for t + θ ∈ [−h, 0),

j−1
(∫ t

0
T�∗

0 (t− s)G(u(s))ds
)

(θ) for t + θ ≥ 0

=

{
ϕ(t + θ) for t + θ ∈ [−h, 0),

j−1
(∫ t

t+max{−t,·} F (u(s))ds
)

(θ) for t + θ ≥ 0

=

{
ϕ(t + θ) for t + θ ∈ [−h, 0),
F (u(t + θ)) for t + θ ≥ 0.

Thus one has u(t) = xt, and (b) is also proved.
As is clear from the results of section 2, the abstract integral equation approach

is ideal for deriving results concerning the qualitative behavior of solutions, such as
stability and bifurcation. On the other hand, for proving regularity of solutions it is
usually easier to attack the problem (DE) and (IC) directly. This is shown in the proof
of the next theorem (which is not the sharpest possible result; indeed, the conclusion
holds even if F is only locally Lipschitz, but then the proof is a bit more technical).
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One of the advantages of the equivalence result of Theorem 3.7 is that we can freely
choose between the abstract and the concrete, according to our needs.

Theorem 3.8. Let F : L1
(
[−h, 0];RN

)
→RN be globally Lipschitz continuous.

Then the unique solution x : [−h,∞)→RN of (DE), (IC) with ϕ ∈ L1
(
[−h, 0];RN

)
is continuous in [0,∞).

Proof. Let ϕ ∈ L1
(
[−h, 0];RN

)
and � > 0. Define

Z =
{
y ∈ C

(
[0, �];RN

)
: y(0) = F (ϕ)

}
.

Then Z is a closed subset of the Banach space C
(
[0, �];RN

)
and thus a complete

metric space. Define for each y ∈ Z the function Φ(y) on [0, �] by

(Φy) (t) = F (zyt ), 0 ≤ t ≤ �,

where zy is the function defined by

zy(τ) =

{
ϕ(τ) for −h ≤ τ < 0,
y(τ) for ≤ τ ≤ �

and zyt is the translate of zy as in (1.2). Clearly zy belongs to L1. Because translation
is continuous when regarded as a mapping from an interval to L1 and F is continuous
on L1, it follows that Φy is continuous. Moreover, (Φy) (0) = F (zy0 ) = F (ϕ), and
hence Φy belongs to Z. Next we show that Φ is a contraction on Z for � sufficiently
small. Because F is globally Lipschitz continuous we have for y1, y2 ∈ Z

|(Φy1) (t) − (Φy2) (t)| = |F (zy1

t ) − F (zy2

t )|

≤ L ‖zy1

t − zy2

t ‖L1([−h,0];RN )

≤ L

∫ 


0

|y1(τ) − y2(τ)| dτ.

Hence Φ has, for � sufficiently small, a unique fixed point. The fixed point is obviously
a solution of (DE) and (IC). This proves the assertion.

The present way to associate a dynamical system with a Volterra integral equation
is dual to the way studied in [21], where, of course, “dual” is precisely defined only
in the linear case. The advantage of the present approach is that we also cover au-
tonomous nonlinear problems that are not of convolution type, while [21] is restricted
to convolution equations (see subsection 3.5 below).

3.3. Steady states. In this subsection we characterize the steady states of the
nonlinear semigroup Σ generated by the abstract integral equation (AIE) in terms of
constant solutions of (DE) and (IC).

Theorem 3.9. (a) Suppose ϕ is a steady state of Σ. Then ϕ is a constant
function

ϕ(θ) = x, θ ∈ [−h, 0],(3.26)

and

x = F (ϕ) .(3.27)

(b) Conversely, if the constant function ϕ given by (3.26) satisfies (3.27), then it
is a steady state of Σ.
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Proof. (a) Let ϕ be a steady state of Σ, i.e., Σ(t)ϕ = ϕ for all t ≥ 0. From (AIE)
we then get

ϕ = T0(t)ϕ + j−1

(∫ t

0

T�∗
0 (t− τ)G(ϕ)dτ

)
, t ≥ 0.

Because T0(t) = 0 for t > h, it follows that

jϕ =

∫ t

0

T�∗
0 (t− τ)G(ϕ)dτ =

N∑
i=1

∫ t

0

T�∗
0 (τ)HiFi(ϕ)dτ.

Using Lemma 3.5 we then deduce that for t > h

(jϕ) =

N∑
i=1

−ei

∫ t

t+θ

Fi(ϕ)dθ =

N∑
i=1

eiθFi(ϕ).

But because j is integration, this means precisely that

ϕ(θ) =

N∑
i=1

eiFi(ϕ) = F (ϕ), θ ∈ [−h, 0];

that is, ϕ is a constant function and (3.27) holds.
The proof of (b) is similar.
From the equivalence of (AIE) and (DE), (IC) (Theorem 3.7) it is clear that a

function ϕ that takes the constant value x ∈ RN on [−h, 0] is a steady state of Σ if
and only if the constant function x(t) = x, t ∈ [−h,∞) is the solution of (DE), (IC).

Remark 3.10. In what follows we shall abuse notation and denote both the
constant function ϕ on [−h, 0] and the corresponding constant function on [−h,∞)
by the same symbol as the constant value they take, viz. x.

Because the constant solutions of (DE), (IC) are steady states of the dynamical
system Σ, we have well-defined notions of stability at our disposal. It follows immedi-
ately from Theorem 3.8 that the constant solution x of (DE), (IC) is (locally) stable
if and only if for every ε > 0 there exists a δ > 0 such that∫ 0

−h

|x(t) − x|dt ≤ δ ⇒ |x(t) − x| ≤ ε for all t > 0

and (locally) exponentially stable if there exist numbers δ > 0, K > 0, α > 0 such
that ∫ 0

−h

|x(t) − x|dt ≤ δ ⇒ |x(t) − x| ≤ Ke−αt for all t > 0.

3.4. The characteristic equation. In section 2.5 we showed that whenever
σ(A0) is empty (in particular, when T0 is nilpotent) and the perturbation has finite
dimensional range, the spectrum σ(A) of the perturbed generator consists entirely of
eigenvalues and there exists a characteristic equation

det(E −M(λ)) = 0,

the roots of which are exactly the eigenvalues. The characteristic equation contains
all the information about asymptotic behavior, Hopf bifurcation, etc. In this section
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we identify the matrix M(λ) for the special case in which the unperturbed semigroup
T0 is given by (3.4) and the perturbation G is of the form (3.17).

If G is differentiable at ϕ, there exist functions kij ∈ L∞([0, h];R) such that

G′(ϕ)ϕ =

N∑
i=1

⎛⎝ N∑
j=1

∫ 0

−h

kij(−θ)ϕj(θ)dθ

⎞⎠Hi.

B = G′(ϕ) is thus of the form (2.15), with r�∗
i = Hi and r∗i = ki = {kij}Nj=1.

Corollary 3.4 now yields

(rj(λ)) (θ) =
(
j−1R(λ,A�∗

0 )Hj

)
(θ)(3.28)

=

∫ 0

θ

eλ(θ−τ)Hj(dτ) = eλθej , θ ∈ [−h, 0],

and hence

Mij(λ) = 〈rj(λ), ki〉 =

∫ 0

−h

eλθkij(−θ)dθ =

∫ h

0

e−λθkij(θ)dθ = k̂ij(λ).

Denoting the matrix with entries kij by k, the characteristic equation thus takes the
form

det
(
E − k̂(λ)

)
= 0.(3.29)

The results of subsection 2.6 now tell us that if all the roots of the characteristic
equation (3.29) have negative real part, then the steady state is exponentially stable,
whereas it is unstable if at least one root has positive real part. Note that the
hypotheses of Corollary 2.20 are fulfilled, so Nyquist’s criterion for (in)stability is
applicable. It is also a straightforward fill-in exercise to translate Theorem 2.21 into
a result for delay equations (generalizing Theorem 11.1 in [21] to include equations
which are not of convolution type, and being the analogue of Theorem X.2.7 in [23],
which applies to delay differential equations).

3.5. Differentiability for three important classes of nonlinearity. In or-
der to apply the general results on stability and bifurcation to the system (DE), (IC)
we have to give conditions that ensure that the map G : X→X�∗ is Fréchet differ-
entiable with X = L1

(
[−h, 0];RN

)
and G of finite dimensional range given by (3.17)

or, more generally, by (2.14). As noted in subsection 2.5, G is differentiable if and
only if F is differentiable from L1

(
[−h, 0];RN

)
to RN . This leads us to have a closer

look at differentiability criteria for functions from L1
(
[−h, 0];RN

)
to RN .

There is one obvious class of differentiable mappings from L1
(
[−h, 0];RN

)
to RN ,

consisting of those mappings of the form ϕ 	→ (g◦Λ)ϕ, where Λ : L1
(
[−h, 0];RN

)
→RN

is a bounded linear map and g is a smooth function from RN to RN .

A map F that occurs frequently in applications is F = Λ ◦ Ng, where Λ is a
bounded linear map from L1

(
[−h, 0];RN

)
to RN and Ng is the Nemytskĭı operator

induced by a smooth function g : RN →RN as follows:

(Ng(ϕ)) (θ) = g(ϕ(θ)).(3.30)
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For instance, the nonlinear Volterra convolution equation

x(t) =

∫ h

0

k(s)g(x(t− s))ds, t > 0,(3.31)

x(t) = ϕ(t), −h ≤ t ≤ 0,(3.32)

is of the form (DE), (IC) with F = Λ ◦Ng and Λϕ =
∫ h

0
k(θ)ϕ(−θ)dθ.

It may come as a surprise that the Nemytskĭı operator from L1
(
[−h, 0];RN

)
to

L1
(
[−h, 0];RN

)
generated by a differentiable, globally Lipschitz continuous function

g : RN →RN is not Fréchet differentiable unless g is affine (a constant plus a linear
operator), but in hindsight this is easy to understand. An indication of the reason is
that in the formal Taylor series expansion

(Ng(ϕ)) (θ) = g(ϕ(θ))(3.33)

= g(ϕ(θ)) + g′(ϕ(θ))(ϕ(θ) − ϕ(θ)) +
1

2
g′′(ϕ(θ))(ϕ(θ) − ϕ(θ))2 + · · ·

around an element ϕ ∈ L1, the higher order terms contain powers of ϕ which need
not belong to L1. So showing that the higher order terms are small cannot be done
in the standard way (and, in fact, cannot be done at all).

The above result may seem disastrous for our theory because it appears as if the
important case of the nonlinear Volterra convolution equation (3.31) would not be
covered by it. Fortunately, a simple transformation saves our bacon.

Consider the Volterra functional equation

x(t) = ΛNg(xt)(3.34)

with initial condition

x0 = ϕ.(3.35)

Applying the function g to both sides of (3.34) and (3.35), one obtains

(g ◦ x)(t) = g (ΛNg(xt))(3.36)

and

g(x0) = g(ϕ).(3.37)

But

(g ◦ x)t(θ) = g(x(t + θ)) = g(xt(θ)) = (Ng(xt))(θ),

that is,

(g ◦ x)t = Ng(xt),(3.38)

and hence (3.36) and (3.37) take the form

y(t) = (g ◦ Λ) (yt) ,(3.39)

y0 = ψ(3.40)
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with

y(t) = (g ◦ x) (t),(3.41)

ψ = g ◦ ϕ.(3.42)

But g ◦ Λ is differentiable, and thus our theory applies to the transformed problem
(3.39), (3.40): A constant solution y of (3.39), (3.40) is exponentially stable if all the
roots λ of the characteristic equation

det
(
E − g′(x)k̂(λ)

)
= 0(3.43)

satisfy Reλ < 0 and unstable if there exists at least one root with positive real part.
We recover the solution x of our original problem (3.34), (3.35), because (3.34),

(3.41), and (3.38) together show that

x(t) = Λyt.(3.44)

It remains to be shown that the stability properties of the transformed problem de-
termine those of the original problem. For this the differentiability of g is irrelevant;
we assume only global Lipschitz continuity as this guarantees that the Nemytskĭı
operator Ng maps L1 into L1.

Theorem 3.11. Let Λ : L1
(
[−h, 0];RN

)
→RN be a bounded linear operator and

let g : RN →RN be globally Lipschitz continuous with Lipschitz constant L. Let x be
a constant solution of (3.34), (3.35) and let y = g(x) be the corresponding constant
solution of (3.39), (3.40). Then the following hold:

(a) If y is [exponentially] stable, then so is x.
(b) If y is unstable, then so is x.
Proof. The estimate

|x(t) − x| = |Λyt − Λg(x)| ≤ ‖Λ‖‖yt − y‖1(3.45)

proves (a). Assume now that x is stable and let y be the solution of (3.39), (3.40).
Define

x(t) = Λyt, t ≥ 0.(3.46)

We know by Theorem 3.8 that y is continuous for t ≥ 0; it follows that xh ∈
L1
(
[−h, 0];RN

)
. So, for t ≥ h, y may be regarded as the solution of (3.39) with

the initial condition (3.40) replaced by

yh = g ◦ xh.(3.47)

Because the mapping that takes ψ to yt is a strongly continuous (nonlinear) semigroup,
sup0≤t≤h ‖yt − y‖1 can be made arbitrarily small by choosing ‖ψ − y‖1 sufficiently
small. Now (3.45) shows that xh − x also can be made arbitrarily small.

Let ε > 0 be arbitrary. Because x is stable one can choose δ > 0 such that
‖xh − x‖ < δ implies |x(t) − x| < ε/L for all t > h. It follows that

|y(t) − y| = |g(x(t)) − g(x)| ≤ L|x(t) − x| < ε

for all t > 0 provided that ‖ψ − y‖1 is sufficiently small, that is, y is stable.
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Note that if we linearize the nonlinear Volterra integral equation (3.31) in RN

(as opposed to linearizing F : L1 →RN in the delay equation), we obtain

x(t) =

∫ t

0

k(s)g′(x)x(t− s)ds + G(x)(t),(3.48)

where G(x)(t) stands for the higher order terms. In the theory of Volterra integral
equations [29] one associates the characteristic equation

det
(
E − k̂(λ)g′(x)

)
= 0(3.49)

with (3.48). Clearly, (3.43) and (3.49) have exactly the same roots.
A third class of differentiable maps from L1

(
[−h, 0];RN

)
to RN is obtained by

composing a map from the space C
(
[0, �];RN

)
of continuous functions on some inter-

val [0, �] to RN with a linear (or affine) map from L1
(
[−h, 0];RN

)
to C

(
[0, �];RN

)
.

The reason for this detour via C
(
[0, �];RN

)
is that, roughly speaking, it is much

easier for a function to be differentiable if it is defined on C
(
[0, �];RN

)
than if it is

defined on L1. Indeed, the product of two continuous functions which are small in the
supremum norm is continuous, and the supremum norm of the product is of quadratic
order. In particular, the expansion (3.33) applied to a continuous function ϕ shows
that the Nemytskĭı operator is differentiable in C

(
[0, �];RN

)
and that

N ′
g(ϕ) = Ng′(ϕ).(3.50)

This observation is important in applications to, for instance, population dynamics.
Let us illustrate it by an age-structured model of the type first studied in [30]. Assume
that the age-specific per capita death rate depends on the present value I(t) of the
(one-dimensional) environmental condition in the following way:

μ(a, I(t)) = μ0(a) + μ1(a)I(t)(3.51)

(where μ0 and μ1 are nonnegative functions). Then the probability F(a;ϕ) that an
individual that was born a time units ago is still alive, given the history ϕ of the
environmental condition, is the solution of the ODE initial value problem

d

dα
F(α;ϕ) = −μ(α,ϕ(α− a))F(α,ϕ),(3.52)

F(0) = 1(3.53)

at α = a, that is,

F(a;ϕ) = exp

(
−
∫ a

0

(μ0(α) + μ1(α)ϕ(α− a)) dα

)
.(3.54)

The theory presented in this paper presupposes a maximum life span h. This is
achieved by assuming that μ0 has a nonintegrable singularity at h:∫ h

0

μ0(a)da = ∞,

because then the survival probability

F0(a) = exp

(
−
∫ a

0

μ0(α)dα

)
(3.55)
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with respect to density-independent effects vanishes at h.
If β(a, I(t)) is the age-specific fecundity, then the integral equations (1.18), (1.19)

combined with the feedback law (1.17) yield

b(t) =

∫ h

0

β(a, I(t))F(a; It)b(t− a)da,(3.56)

I(t) =

∫ h

0

γ(a)F(a; It)b(t− a)da,(3.57)

which is a delay equation of the type (DE). More specifically, we have(
b(t)
I(t)

)
= F

(
bt
It

)
(3.58)

with F given by

F

(
ψ
ϕ

)
=

( ∫ h

0
β
(
a,
∫ h

0
γ(α)F(α;ϕ)ψ(−α)dα

)
F(a;ϕ)ψ(−a)da∫ h

0
γ(a)F(a;ϕ)ψ(−a)da

)
.(3.59)

F is a well-defined mapping from L1
(
[−h, 0];R2

)
to R2 if γF0 ∈ L∞[0, h] and

β(·, I)F0 ∈ L∞[0, h] for all I ∈ R, and hence we make this assumption.
We want to show that F is differentiable. First notice that the argument of

the exponential function in formula (3.54) is an affine map taking ϕ ∈ L1[−h, 0] to
C[0, h]. The mapping ϕ 	→ F(·;ϕ) is thus obtained by composing the Nemytskĭı
operator induced in C[0, h] by the exponential function with an affine map. As we
already saw, this map is Fréchet differentiable. For fixed ψ, the second component F2

of F is now obtained by applying a continuous linear mapping to the differentiable
map ϕ 	→ F(·;ϕ). Hence F2 is differentiable in ϕ. Because F2 is linear in ψ it is
also differentiable in ψ. Because F2(ψ,ϕ) appears as the second argument of β in the
expression for F1, the chain rule implies that F2 also is differentiable provided that
β : R2 →R is differentiable in its second argument.

The derivative of F can be computed explicitly. A straightforward but tedious
computation yields F ′ at a steady state (b, I):[

F ′
(

b
I

)](
ψ
ϕ

)
=

∫ h

0

k(a)

(
ψ
ϕ

)
(−a)da,(3.60)

where k is a 2 × 2 matrix-valued function with entries

k11(a) =

(
γ(a)

∫ h

0

∂2β(τ, I)F(τ ; I)dτ b + β(a, I)

)
F(a; I),(3.61)

k12(a) =

∫ h

0

∂2β(τ, I)F(τ ; I)dτ b k22(a)(3.62)

−
∫ h−a

0

μ1(α)β(α + a, I)F(α + a; I)dα b,

k21(a) = γ(a)F(a; I),(3.63)

k22(a) = −
∫ h−a

0

μ1(α)γ(α + a)F(α + a; I)dα b.(3.64)
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The characteristic equation is (3.29) with the matrix k defined by (3.61)–(3.64). It is
easy to check that the resulting stability criterion is equivalent (as it should be) to
the one given in [30] for γ ≡ 1 and in [32] and [50] for the general case.

The steady environmental condition I of a nontrivial equilibrium (b, I) �= (0, 0) is
a solution (there may be many) of the steady state condition

1 =

∫ h

0

β(a, I)F(a; I)da.(3.65)

Once I has been solved from (3.65), the corresponding steady birth rate is obtained
from

b =
I∫ h

0
γ(a)F(a; I)da

.(3.66)

On the other hand, for the population-free, or trivial, steady state (b, I) = (0, 0), the
characteristic equation (3.29) reduces to the scalar equation

1 =

∫ h

0

e−λaβ(a, 0)F0(a)da.(3.67)

As a consequence, the population-free steady state is exponentially stable if

R0 :=

∫ h

0

β(a, 0)F0(a)da < 1

and unstable if

R0 > 1.

In subsection 5.1 we shall elaborate on this a bit more in the context of a model for
an age-structured population with cannibalistic behavior.

4. Volterra functional equations coupled with delay differential equa-
tions. In applications to structured population dynamics, one encounters models
that take the form of a Volterra functional equation coupled with a delay differential
equation [31, 32]. In this section we therefore briefly consider systems of the following
type:

x(t) = F1(xt, yt),(4.1)

ẏ(t) = F2(xt, yt).(4.2)

For the component x of the delay equation (4.1), we choose as before X =
L1
(
[−h, 0];RN

)
as state space, whereas the natural state space for the component y

of the delay differential equation (4.2) is Y = C
(
[−h, 0];RM

)
(see [23]). We therefore

have to assume that the mappings F1 : X×Y →RN and F2 : X×Y →RM are at least
Lipschitz continuous. Equations (4.1) and (4.2) must, of course, be supplemented by
initial conditions

x(θ) = ϕ(θ), −h ≤ θ ≤ 0,(4.3)

y(θ) = ψ(θ), −h ≤ θ ≤ 0.(4.4)
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In section 3 we showed in detail how a Volterra functional equation could be
written as a semilinear abstract integral equation. The same program has been carried
out for delay differential equations in the book [23] (see also [40]). It is now an easy
exercise to combine the two procedures for the coupled system (4.1)–(4.4).

Let T10 be the C0-semigroup defined on X by (3.4) and define the C0-semigroup
T20 on Y by

(T20(t)ψ)(θ) :=

{
ψ(t + θ) for t + θ ∈ [−h, 0],
ψ(0) for t + θ ≥ 0,

ψ ∈ Y, t ≥ 0, θ ∈ [−h, 0].(4.5)

The two semigroups T10 and T20 induce in an obvious way a semigroup T0 on X ×Y :

T0(t) =

(
T10(t) 0

0 T20(t)

)
.(4.6)

It was shown in [23] that Y �∗ has the representation RM × L∞ ([−h, 0];RM
)

and
that Y is �-reflexive with respect to T20. Because X is �-reflexive with respect to
T10, as shown in section 3, it is plain that X × Y is �-reflexive with respect to T0,
that (X×Y )�∗ is (isometrically isomorphic to) X�∗×Y �∗, and that jX×Y (X×Y ) =
jX(X)× jY (Y ) (here, of course, jZ denotes the canonical embedding of Z into Z�∗).
Note also that for t > h, the range of T20(t) lies in the subspace of Y consisting of
the constant functions, which is finite dimensional. In particular, T20(t) is eventually
compact. As T10 is nilpotent, the semigroup T0 on X × Y is eventually compact.

The system (4.1)–(4.4) is equivalent to the abstract integral equation

(AIE) u(t) = T0(t)

(
ϕ
ψ

)
+ j−1

(∫ t

0

T�∗
0 (t− s)G(u(s))ds

)
,

where G : X × Y →X�∗ × Y �∗ is defined by

G(ϕ,ψ) =

N∑
i=1

F1i(ϕ,ψ)

(
r�∗
i

0

)
+

M∑
i=1

F2i(ϕ,ψ)

(
0

s�∗
i

)
.(4.7)

Here r�∗
i ∈ X�∗ is the Heaviside function (3.18), and s�∗

i = (fi, 0) ∈ Y �∗, where
{f1, f2, . . . , fM} is the standard basis of RM and 0 is the zero element of
L∞ ([−h, 0];RM

)
. We are now exactly in the situation described in section 2.5.

The resolvent R
(
λ,A�∗

10

)
of T�∗

10 was calculated in Corollary 3.4 and the associated

vector ri(λ) in (3.28). An analogous computation for T�∗
20 shows that σ(A20) =

σ(A�∗
20 ) = {0} and that the resolvent of A�∗

20 is given by(
R
(
λ,A�∗

20

)
(α, ψ)

)
(θ)(4.8)

=
1

λ
eλθα +

∫ 0

θ

eλ(θ−τ)ψ(τ)dτ, (α, ψ) ∈ Y �∗, θ ∈ [−h, 0].

In particular,

si(λ) :=
(
j−1R

(
λ,A�∗

20

)
s�∗
i

)
(θ) =

1

λ
eλθfi, θ ∈ [−h, 0].(4.9)

If F is Fréchet differentiable, its derivative can be represented by the (N +M)×
(N + M) matrix (

k11 m12

k21 m22

)
,(4.10)
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where k11 and k21 are N ×N (resp., N ×M) matrices of elements of L∞([0, h] and
m12 and m22 are M × N (resp., M × M) matrices of elements in NBV [0, h]. The
interpretation of (4.10) is that

F ′(ϕ,ψ)

(
ϕ
ψ

)
=

( ∫ h

0
k11(θ)ϕ(−θ)dθ +

∫ h

0
m12(dθ)ψ(−θ)∫ h

0
k21(θ)ϕ(−θ)dθ +

∫ h

0
m22(dθ)ψ(−θ)

)
.(4.11)

Using the expressions (3.28) and (4.9) for ri(λ) and si(λ), respectively, and the defi-
nition (2.18) of the matrix M(λ), we deduce that

M(λ) =

(
k̂11(λ) 1

λ d̂m12(λ)

k̂21(λ) 1
λ d̂m22(λ)

)
, λ �= 0,(4.12)

where, as before, k̂ denotes the Laplace transform of k and d̂m denotes the Laplace–
Stieltjes transform of m,

d̂m(λ) =

∫ h

0

e−λθm(dθ).(4.13)

It now follows from Theorem 2.15 that λ �= 0 is an eigenvalue of the generator of
the linearized equation (LAIE) if and only if

det (E −M(λ)) = 0(4.14)

and that the algebraic multiplicity of λ coincides with the order of λ as a root of
(4.14). Clearly, for λ �= 0, (4.14) is equivalent to

det

((
E 0
0 λE

)
−
(

k̂11(λ) d̂m12(λ)

k̂21(λ) d̂m22(λ)

))
= 0.(4.15)

As Theorem 2.17 shows that the singularity at λ = 0 is removable, we conclude that
(4.15) is the characteristic equation for the (AIE) with T0 and G as specified above.

5. Examples.

5.1. Cannibalistic interaction. Even though size is the more natural individ-
ual state variable used to describe cannibalistic interaction, we shall here use age as
a substitute, while referring to [25, section 4.1] and [28] for size-structured models.
We assume that individuals turn adult and start to reproduce upon reaching age a.
Furthermore, only adults practice cannibalism and their victims are juveniles. The
vulnerability for intraspecific predation is defined by a function c of age, the support
of which lies in [0, a).

Let F0(a) be the survival probability to at least age a with respect to causes of
death other than cannibalism. Let b(t) be the population birth rate at time t and
I1(t) the total number of adults at time t. We assume that “standard” adult food
(that is, food other than juveniles of their own kind) is available at a constant density
and that an adult produces, from this food, offspring at a rate Z. Let I2(t) denote
the rate at which an adult produces offspring at time t on the basis of the energy
provided by its cannibalistic actions. Then, by definition,

b(t) = (Z + I2(t)) I1(t),(5.1)

I1(t) =

∫ ∞

a

b(t− a)F0(a)e
−
∫ a
0

c(α)I1(t−a+α)dαda.(5.2)
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To these equations we add

I2(t) =

∫ a

0

b(t− a)F0(a)e
−
∫ a
0

c(α)I1(t−a+α)dαc(a)E(a)da,(5.3)

expressing that the (instantaneous) offspring yield resulting from the consumption of
an individual of age a is given by E(a).

The system (5.1)–(5.3) is of the form (3.54)–(3.57) (albeit with two instead of one
interaction variable), and thus the arguments provided in section 3.5 establish that
the system is a (DE) on L1 with a C1-map F . To guarantee that the maximum delay
is finite, we assume that F0 drops to zero at a finite age h (or, equivalently, that the
μ0 of (3.55) has a nonintegrable singularity at h).

By elementary manipulations one can eliminate I2 and b from the equations for
nontrivial steady states to arrive at a single equation

Z =
eCI1∫ h

a
F0(a)da

(
1 − I1

∫ a

0

c(a)E(a)F0(a)e
−I1

∫ a
0

c(α)dαda

)
(5.4)

for the unknown I1. Here

C :=

∫ a

0

c(a)da.(5.5)

Next we consider Z (thus, in essence, the density of the standard food) as a
bifurcation parameter. The formula (5.4) is an explicit expression for Z as a function
of I1. If we insert I1 = 0 at the right-hand side of (5.4), we obtain the critical value

Zcrit =
1∫ h

a
F0(a)da

(5.6)

such that newborn individuals, on average, produce exactly one offspring. In the
absence of cannibalism (i.e., for c ≡ 0), a nontrivial steady state exists if and only
if Z > Zcrit. By computing the derivative of Z with respect to I1 from (5.4) and
evaluating at I1 = 0, one concludes that the condition∫ a

0

(E(a)F0(a) − 1) c(a)da > 0(5.7)

guarantees that the bifurcation from the trivial steady state is subcritical in the
sense that I1 is positive for values of Z slightly less than Zcrit. Thus if (5.7) holds,
cannibalism allows the population to persist at levels of the standard food that are,
by themselves, insufficient to sustain a consumer population. We refer once more to
[25, section 4.1] and [28] for the biological interpretation and further elaborations.

A characteristic equation can now be derived as for the system (3.54)–(3.57)
treated in section 3.5. The stability of the trivial steady state is governed by the
position of the roots of

1 = Z

∫ h

a

e−λaF0(a) da(5.8)

in the complex plane. Hence the trivial solution is stable for Z < Zcrit and unstable
for Z > Zcrit. According to the principle of exchange of stability (see [15, 16, 44]
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and [3] for an application to population dynamics), the branch of positive steady
states described by (5.4) is locally (i.e., for Z near Zcrit) stable if the bifurcation is
supercritical and unstable if it is subcritical.

For the nontrivial steady states a detailed analysis of the global shape of the
curve defined by (5.4) and the changes in the position of the roots of the associated
characteristic equation along this curve requires a considerable effort and is beyond
the scope of this paper. The point, however, is that the results of this paper allow one
to derive conclusions about (in)stability and Hopf bifurcation from the appropriate
information about these roots.

5.2. A structured metapopulation model. In this subsection we consider
a metapopulation model first introduced in [33] and later modified and analyzed in
[34, 35, 36, 37, 39, 41]. The model considers an infinite collection of identical patches
that can support local populations. The structuring variable is the size x of a local
population. Local populations may go extinct due to a catastrophe, but the vacated
patch is immediately recolonized by migrants arriving from other patches. In PDE-
formulation, the model is described by

∂

∂t
n(t, x) +

∂

∂x
(f(x,D(t))n(t, x)) = −μ(x)n(t, x), t > 0, x > 0,(5.9)

f(0, D(t))n(t, 0) =

∫
R+

μ(x)n(t, x) dx,(5.10)

d

dt
D(t) = −(α + ν)D(t) +

∫
R+

γ(x)n(t, x) dx, t > 0,(5.11)

supplemented, of course, by appropriate initial conditions.
In (5.9)–(5.11), n(t, ·) is the size-distribution of local populations at time t, and

D(t) is the density of dispersers at time t. γ(x) = k(x)x is the emigration rate (k(x)
is the per capita emigration rate), α is the rate at which dispersers immigrate into a
patch, and ν is the death rate during dispersal. f(x,D) is the growth rate of a local
population of size x when the density of dispersers is D. It is given by

f(x,D) = g(x) + αD = r(x)x− k(x)x + αD,(5.12)

where r(x) is the difference between the per capita birth and death rates when the
local population size is x. Finally, μ(x) is the size-specific catastrophe rate of local
populations.

Next we rewrite the equations (5.9)–(5.11) as a coupled system of the form (4.1)–
(4.2). By the age of the local population of a patch we shall mean the time elapsed
since the last catastrophe. Hence a local population of age a at time t had size zero
at time t− a. The dynamics of such a local population is therefore described by the
scalar ODE

d

dτ
x(τ) = g(x(τ)) + αDt(τ − a), 0 < τ ≤ a,(5.13)

x(0) = 0.(5.14)

For the solution of (5.13)–(5.14) we use the notation

x(τ) = X(τ, a,Dt), 0 ≤ τ ≤ a.(5.15)
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The probability that a local population survives to age a, given the history of D,
is

F(a,Dt) = e−
∫ a
0

μ(X(τ,a,Dt)) dτ .(5.16)

The results formulated in this paper require a finite maximum life span. In the
present model, this could be achieved by assuming that the catastrophe rate has a
nonintegrable singularity at some finite local population size. However, in nature it is
often the case that large local populations are much less prone to extinction than small
ones, which experience a high risk of extinction due to demographic stochasticity. If
this is the case, μ should rather be a decreasing function of local population size instead
of blowing up. Also, exponentially distributed lifetimes (corresponding to constant
catastrophe rates μ) occur frequently in applications. Fortunately, our theory carries
over almost verbatim to the case of infinite delay (see section 6). In this example we
shall therefore not make the assumption of a finite maximum life span. In particular,
we shall allow the catastrophe rate μ to be constant.

We can now express the age-distribution

m(t, a) = f(X(a, a,Dt), D(t))n(t,X(a, a,Dt))(5.17)

of local populations in terms of the histories of the disperser density D and the birth
rate

b(t) = f(0, D(t))n(t, 0)(5.18)

of local populations as follows:

m(t, a) = b(t− a)F(a,Dt) = bt(−a)F(a,Dt), t ≥ 0, 0 ≤ a.(5.19)

Equations (5.10) and (5.11) now yield the following system of a delay equation coupled
with a delay differential equation:

b(t) =

∫ ∞

0

μ(X(a, a,Dt))F(a,Dt)bt(−a) da,(5.20)

d

dt
D(t) = −(α + ν)D(t) +

∫ ∞

0

γ(X(a, a,Dt))F(a,Dt)bt(−a) da.(5.21)

Here D plays the role of the environmental interaction variable. As we saw in section 4,
the state space of bt should be taken as L1 and the space of Dt as C.

The steady state equation for (5.20), (5.21) is readily found. For constant func-
tions b and D, (5.20) becomes an identity because∫ ∞

0

μ(X(a, a,D))F(a,D)da = 1.(5.22)

The identity (5.22) reflects the conservation of local populations: After a catastrophe,
the patch is immediately recolonized. If we normalize the total amount of patches to
1, then

b =
1∫∞

0
F(a,D)da

(5.23)
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and the steady state condition becomes

D =
1

α + ν
·
∫∞
0

γ(X(a, a,D))F(a,D)da∫∞
0

F(a,D)da
.(5.24)

The numerator on the right-hand side of (5.24) is the expected number of dispersers
produced by a local population during its lifetime. When divided by the expected
lifetime

∫∞
0

F(a,D)da, it yields the average rate of dispersers produced by a patch,
and when this rate is multiplied by the expected sojourn time 1/(α + ν) in the
disperser pool, one gets the local population’s contribution to the disperser pool.
Equation (5.24) says that at equilibrium this contribution equals the steady disperser
density (i.e., dispersers per patch).

In order to derive a characteristic equation and apply our theory, we have to show
that the right-hand sides of (5.20) and (5.21) are differentiable in bt and Dt. As they
are linear in bt, we only have to prove differentiability of ϕ 	→ X(τ, a, ϕ) as a mapping
on C. The differentiability of ϕ 	→ F(a, ϕ) then follows immediately, and to obtain
the desired result we only have to assume differentiability of the real functions μ and
γ.

Assume that g is differentiable. Differentiating the integrated form of (5.13),
(5.14),

X(τ, a, ϕ) =

∫ τ

0

g(X(σ, a, ϕ)) dσ + α

∫ τ

0

ϕ(σ − a) dσ,(5.25)

with respect to ϕ at D, one obtains the linear equation

∂

∂ϕ
X(τ, a,D)ϕ =

∫ τ

0

g′(X(σ, a,D))
∂

∂ϕ
X(σ, a,D)ϕdσ+α

∫ τ

0

ϕ(σ−a) dσ,(5.26)

the solution of which is

∂

∂ϕ
X(τ, a,D)ϕ = α

∫ τ

0

e
∫ τ
σ

g′(X(s,a,D)) dsϕ(σ − a) dσ.(5.27)

Let us now assume that the catastrophe rate μ and the per capita emigration
rate k are constant. The survival probability then becomes independent of ϕ: F(a) =
exp(−μa), and the equations (5.20), (5.21) simplify to

b(t) =

∫ ∞

0

μe−μabt(−a) da,(5.28)

d

dt
D(t) = −(α + ν)D(t)

+ k

∫ ∞

0

X(a, a,Dt)e
−μabt(−a) da,(5.29)

while the steady state condition (5.24) simplifies to

D =
μk

α + ν

∫ ∞

0

X(a, a,D)e−μada.(5.30)

We take the per capita emigration rate k as a bifurcation parameter. Note that
X(a, a,D), being the solution of dx/da = r(x)x− kx + αD, x(0) = 0, depends on k,
so in general one cannot solve (5.30) explicitly for k as a function of D.
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Fig. 1. Equilibrium values for the immigration rate αD in the case of an Allee effect with
f(x,D) given by (5.32). Parameters: α = 0.5, μ = 0.2, ν = 0.1, H = 1, β = 18, c = 1, d = 8.

Next we assume that there is an Allee effect, that is, that small local populations
have a negative intrinsic growth rate [1] and therefore cannot persist without a suffi-
ciently large immigration rate. We model this by assuming that the per capita birth
rate depends on the local population size x as

βx

H + x
(5.31)

for some positive constants β and H. For a discussion of the rationale for this choice
and its biological interpretation we refer to [18, 38]. Furthermore, if we make the
standard assumption of density-dependent death rate as in the logistic equation, we
end up with

f(x,D) =

(
βx

H + x
− c− dx

)
x− kx + αD(5.32)

for some positive constants c and d.
It is clear that with the choice (5.32), the curve defined by (5.30) in the kD-plane

does not touch the axis D = 0. As a matter of fact, as shown in [39], equation
(5.30) defines a closed curve like the one depicted in Figure 1, at least for some
choices of parameter values. As seen in Figure 1, there is a saddle-node bifurcation at
k ≈ 0.2 and another one at k ≈ 4.9. In contrast to the situation with the transcritical
bifurcation treated in subsection 5.1, we cannot allude here to the principle of exchange
of stability to determine which of the two branches is stable and which is not. That
information has to be deduced from the characteristic equation, which we now derive.

The linearized version of (5.28), (5.29) is

ψ(t) =

∫ ∞

0

μe−μaψ(t− a) da,(5.33)
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d

dt
ϕ(t) = −(α + ν)ϕ(t) + k

∫ ∞

0

Y (a,D)ψ(t− a) da

+ αk

∫ ∞

0

Z(a,D)ϕ(t− a) da,(5.34)

where

Y (a,D) = X(a, a,D)e−μa,(5.35)

Z(a,D) = μ

∫ ∞

a

e
∫ σ
σ−a

g′(X(τ,σ,D))dτe−μσ dσ.(5.36)

Taking the Laplace transform of (5.33), (5.34), one obtains

ψ̂(λ) =
μ

μ + λ
ψ̂(λ),(5.37)

λϕ̂(λ) − ϕ(0) = −(α + ν)ϕ̂(λ) + kŶ (λ,D)ψ̂(λ) + αkẐ(λ,D)ϕ̂(λ).(5.38)

Hence the characteristic equation is

det

(
1 − μ

μ+λ 0

−kŶ (λ,D) λ + α + ν − αkẐ(λ,D)

)
= 0.(5.39)

λ = 0 is always a root of (5.39). The reason is the indeterminacy of b explained above.
The situation is analogous to the simple ODE SIS-model of mathematical epidemi-
ology. If one treats the SIS model as a two-dimensional ODE, zero is an eigenvalue,
which disappears after the substitution S = N − I (N is the total population). Simi-
larly, in our case the stability of the steady state is determined by the location in the
complex plane of the roots of the equation

λ + α + ν − αkẐ(λ,D) = 0.(5.40)

For λ �= −(α + ν), (5.40) is equivalent to

1 − αk
Ẑ(λ,D)

λ + α + ν
= 0,(5.41)

and to this equation we can apply Nyquist’s criterion (Corollary 2.20). The (numer-
ical) results show that the upper branch (the thick line in Figure 1) is stable, while
the lower branch (thin line) is unstable.

6. Discussion. The principle of linearized stability and the Hopf bifurcation
theorem are among the fundamental results of the theory of ODEs. In the past three
decades they have been generalized in various ways to infinite dimensional dynamical
systems. In this paper we have used perturbation theory of adjoint semigroups (sun-
star-calculus) to prove the principle of linearized stability and the Hopf bifurcation
theorem for Volterra functional equations. The sun-star-framework made it possible
to treat fully nonlinear functional equations as semilinear problems by transforming
the original equation into an abstract integral equation of variation-of-constants type.

The transformation of the fully nonlinear problem into a seminlinear problem
was made possible by extending the originally given state space. The idea that one
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should extend the state space when dealing with Hopf bifurcation for delay differential
equations was introduced by Chow and Mallet-Paret in 1977 in a pioneering paper
[7]. The sun-star-framework provides a functional analytic elaboration of this idea.

The principle of linearized stability consists of two parts. The first part concerns
stability and says that if all roots of the so-called characteristic equation associated
with a steady state have negative real part, then the steady state is exponentially
stable. The second part states that if at least one characteristic root has positive real
part, then the steady state is unstable.

The proof of the stability part of the principle of linearized stability is relatively
simple as it uses only standard estimates and Gronwall’s inequality, and therefore this
part can be rather easily generalized from the ODE setting to infinite dimensional
systems. In contrast, the proof of the instability part is geometric in nature and is
even in the finite dimensional case much more difficult than the proof of the stability
part. As a consequence, infinite dimensional generalizations of the instability part are
comparatively rare in the literature. In many cases authors hint that the instability
part is valid, but without giving a formal proof.

In the important paper [19], Desch and Schappacher proved both the stability
and instability parts of the principle of linearized stability for nonlinear perturbations
of generators of strongly continuous semigroups. Following their proof, Clément et al.
[11] proved both parts within the context of adjoint semigroups and Thieme [53] within
the framework of integrated semigroups. In the book [23] sun-star-calculus was sys-
tematically used for stability and bifurcation analysis of delay differential equations.

Our main motivation comes from structured population dynamics. In their sem-
inal paper [30], Gurtin and MacCamy proved the stability part of the principle of
linearized stability for age-structured populations but passed the instability part with
silence. The same applies to most of the papers published in the early 1980s (e.g.,
[31, 32]). In the first comprehensive book [56] on the mathematical theory of age-
structured population dynamics, Webb treated both the stability and instability parts
using semigroup methods. Finally, in a somewhat neglected paper [50], Prüß proved
both the stability and instability parts in a very general setting of several interacting
age-structured populations.

When one moves from age-structured models to general physiologically structured
models, even results on stability become rare. Tucker and Zimmermann [55] proved
the stability part for a class of models, which, however, did not allow for a finite
number of states-at-birth. Calsina and Saldaña [5] considered a size-structured model
in which all individuals are born with the same size and gave conditions for the
existence of a global attractor. They also gave sufficient conditions for conditional
convergence to a steady state. Here conditional convergence means that the size
distribution converges to a steady distribution in L1, given that the total population
converges.

There is also a vast literature on the stability of Volterra integral equations

x(t) =

∫ t

0

k(s)x(t− s)ds + G(x)(t);(6.1)

see [29] and the references and historical remarks therein. These results are usually
based on a classical theorem of Paley and Wiener [48] or generalizations thereof. In
its basic form, the Paley–Wiener theorem says that if the kernel k belongs to L1(R+),
then its resolvent kernel r is in L1(R+) if the characteristic equation

det
(
E − k̂(λ)

)
= 0(6.2)
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has no roots in the closed half-plane {λ ∈ C : Reλ ≥ 0}. Using the fact that the
solution x of (6.1) satisfies

x(t) = G(x)(t) +

∫ t

0

r(t− s)G(x)(s)ds,(6.3)

it is easy to show that if G(x) is of higher order, then the zero solution of (6.1)
is stable. If (6.2) has no roots in {λ ∈ C : Reλ ≥ −ε} for some ε > 0 (this is the
case, for instance, if k has compact support), then 0 is exponentially stable. So the
stability part of the principle of linearized stability is well known for Volterra integral
equations. On the other hand, a clear statement of the instability part seems to be
lacking in the literature (however, see [21]). In section 3.5 we showed that our general
theory applies to equations of the type (6.1) (at least if k has compact support), and
hence it provides the instability part of the principle of linearized stability for Volterra
integral equations.

In some respects the theory presented in this paper is not general enough. It does
not, for instance, encompass all population dynamical applications that we want to
consider. First of all, we have made the assumption of a finite delay h. In applications
to population dynamics this corresponds to the assumption of a maximum individual
life span. Although true in nature, it disregards the (mathematically) important case
of exponentially distributed lifetimes. However, this is not a serious defect. The as-
sumption was made to have sun-reflexivity, which simplified analysis for the following
reason: For a norm continuous function f : [0,∞)→X�∗, the weak∗- integral∫ t

0

T�∗
0 (t− σ)f(σ)dσ(6.4)

takes values in X�� (Proposition 2.2). The key advantage of assuming sun-reflexivity
is that then the integral automatically takes values in j(X), so that we can apply j−1

to obtain an element of X. If, by lack of compactness, we do not have sun-reflexivity,
it may still be the case that this integral takes values in j(X) if we restrict f to take
values in a certain subspace of X�∗. For (nonlinear) perturbation operators taking
values in such a subspace, the complete machinery retains its strength and all the
results carry through. We intend to elaborate on this very useful remark in detail in a
separate publication, with two motivating examples: infinite delay and a continuum
of birth states.

Secondly, the unknown x(t), which in population dynamical applications is a
vector consisting of the components of the birth rate and the environmental interaction
variables, is a vector in RN . There are important applications, for instance, models of
size-dependent cannibalism [8], which require an infinite dimensional environmental
condition. Prüß [50] treated an age-structured model, and Calsina and Saldaña [6] a
size-structured model with an infinite dimensional environmental condition by other
means, but it is unclear how the results of the present paper could be extended to
cover that situation.

Thirdly, because the Nemytskĭı operator from L1([−h, 0];RN ) to L1([−h, 0];RN )
generated by a smooth function g : RN →RN is Fréchet differentiable if and only
if g is affine, we have to assume in applications to population dynamics that, for
instance, the death rate is of the form μ(ξ, I) = μ0(ξ) + μ1(ξ)I, where ξ is the
individual state variable and I the interaction variable. Interestingly, this affine form,
which corresponds to mass action interaction, is biologically the most relevant. In the
future we shall investigate this aspect in detail in collaboration with J. A. J. Metz.
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Appendix. Proof of Theorem 2.8. In this appendix we prove that if T0 is
eventually compact and if the perturbation B : X→X�∗ is a compact operator, then
the semigroup T defined by (LAIE) is eventually compact. This does not seem to have
been stated in the literature yet. Clément et al. [13] proved the eventual compactness
of the perturbed semigroup under the slightly weaker assumption that R(λ,A�∗

0 )B is
compact, but in addition to that they needed the assumption that

t 	→
∫ t

0

T�∗
0 (t− τ)BT (τ)dτ

is eventually uniformly continuous (that is, continuous from [t0,∞) to L(X) equipped
with the uniform operator topology, for some t0).

The corresponding result for the case in which B maps X into X is known [26,
Proposition 1.14, p. 166]. Without the compactness assumption on B the statement
is false [26, Example 1.15, p. 166]. Therefore, the task in Exercise 2.5 of [23, p. 57 ]
is impossible.

The proof in [26] is rather opaque, as it is based on statements like “without
loss of generality . . . we may . . . assume that [X] is C[0, 1]” [26, p. 525]. The proof
provided here, which also covers the case in which the range of B lies in X, is more
straightforward as it depends only on basic properties of semigroups and integrals.

Note. After we had finished this paper, Horst Thieme pointed out to us that
Theorem 2.8 is an easy consequence of [54, Theorem 3], which he proved using the
theory of integrated semigroups.

Proposition A.1. Let B : X→X�∗ be compact. Then j−1
∫ t

0
T�∗

0 (τ)Bdτ is a
compact operator from X to X.

Proof. By Schauder’s theorem, B∗ : X�∗∗ →X∗ is compact, and hence so is its
“restriction” to X�. Because the composition of a compact operator and a bounded
operator is compact, it follows that B∗ ∫ t

0
T�

0 (τ)dτ : X� →X∗ is compact. Using
Schauder’s theorem once more, we conclude that((

B∗
∫ t

0

T�
0 (τ)dτ

)∗)∣∣∣X = j−1

∫ t

0

T�∗
0 (τ)Bdτ

is compact, as asserted.

Let V be a subset of a Banach space. In what follows, conV denotes the closed
convex hull of V , that is, the smallest closed convex set that contains V . Without
any specifications, closedness refers to the norm topology. When other topologies are
considered, the topology is indicated by a subscript. For instance, if V ⊂ X∗, then
conσ(X∗,X) V is the smallest weakly∗ closed convex set that contains V .

The closed ball of radius r with center at x is denoted by U(x, r).

Theorem A.2. Let B : X→X�∗ be compact. Then j−1
∫ t

0
T�∗

0 (τ)BT (t− τ)dτ
is a compact operator from X to X.

Proof. Because T is a strongly continuous semigroup on X, the function y : τ 	→
T (t − τ)x is continuous from [0, t] to X, and its range belongs to U(0,M) for all

x ∈ U(0, 1) for some M ≥ 1. Because j−1
∫ t

0
T�∗

0 (τ)Bdτ is compact,

j−1

∫ t

0

T�∗
0 (τ)Bdτ(U(0,M))
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is relatively compact, and hence

con j−1

∫ t

0

T�∗
0 (τ)Bdτ(U(0,M))

is compact [51, Theorem 3.25, p. 72]. The proof is therefore completed if we can show
that

j−1

∫ t

0

T�∗
0 (τ)BT (t− τ)xdτ ∈ t con j−1

∫ t

0

T�∗
0 (τ)Bdτ(U(0,M)).

This last statement is proved in the next lemmas.
Lemma A.3. Let t 	→ x∗(t) be a weakly∗ continuous function from [a, b] to X∗.

Then ∫ b

a

x∗(t)dt ∈ (b− a) conσ(X∗,X) x
∗([a, b]).

Proof. First note that by the uniform boundedness principle a weakly∗ continu-
ous function is norm bounded on compact intervals. By the definition of the weak∗

integral, one has that
∫ b

a
x∗(t)dt belongs to the ball

U

(
0, (b− a) sup

a≤t≤b
‖x∗(t)‖

)
,

which is weakly∗ compact by the Banach–Alaoglu theorem. Clearly x∗([a, b]) ⊂
U
(
0, supa≤t≤b ‖x∗(t)‖

)
, which is convex and weakly∗ compact. Hence

conσ(X∗,X) x
∗([a, b])

is weakly∗ compact. Theorem 3.27 of [51] now implies the assertion.
Lemma A.4. Let y : [0, t]→X be continuous. Then

x0 := j−1

∫ t

0

T�∗
0 (τ)By(t− τ)dτ ∈ t con j−1

∫ t

0

T�∗
0 (τ)Bdτ y([0, t]).

Proof. Because j−1
∫ t

0
T�∗

0 (τ)Bdτ is a compact operator from X to X (Propo-

sition A.1), the set V := j−1
∫ t

0
T�∗

0 (τ)Bdτ y([0, t]) is relatively compact in X, and
hence t conV is compact [51, Theorem 3.25, p. 72]. It follows that t con j(V ) =
j(t conV ) is compact in X�∗. Because σ(X�∗, X�) is weaker than the norm topol-
ogy of X�∗, the set t con j(V ) is also σ(X�∗, X�)-compact.

Suppose x0 does not belong to t conV or, equivalently, jx0 /∈ t con j(V ). A version
of the Hahn–Banach theorem [51, Theorem 3.4, p. 58] then implies that there exist
x� ∈ X� and γ ∈ R such that

Re 〈x�, jx0〉 < γ < Re 〈x�, x�∗〉 for all x�∗ ∈ t con j(V ).

So {
x�∗ ∈ X�∗ : Re〈x�, x�∗ − jx0〉 < γ

}
is a σ(X�∗, X�)-neighborhood of jx0 which does not intersect t con j(V ). Hence
jx0 /∈ t conσ(X�∗,X�) j(V ). But this contradicts Lemma A.3.
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Theorem 2.8 is now an immediate corollary of Theorem A.2.
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Volkswagen-Stiftung (Research in Pairs programme at Oberwolfach), the Universities
of Utrecht and Helsinki, as well as the International Institute for Applied Systems
Analysis (IIASA). In the spring semester of 2006, M. G. held the F. C. Donders
Visiting Chair of Mathematics at the University of Utrecht. The present paper is the
result of research done at these rendezvous.
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